
Granular Matter 2, 35–43 c© Springer-Verlag 1999

Fast algorithms for the simulation of polygonal particles
Alexander Schinner

Abstract Three algorithms to speed up discrete-element
simulations for granular matter are presented in this pa-
per. The first algorithm allows to determine neighborhood
relations in polydisperse mixtures of particles of arbitrary
shape, either discs, ellipses, or polygons. The second al-
gorithm allows to calculate the distance of two polygons
in constant time, independently of the complexity of the
shape of the polygons. This makes fast simulations of
polygonal assemblies possible. The third method is a spe-
cial type of parallelization technique which is optimized
for workstations with shared memory.

1
Introduction

The discrete element method (DEM) is a modeling tech-
nique for analyzing complex systems of individual parti-
cles. The method is closely related to molecular dynamic
simulation (MD). The main difference is the kind of inter-
action, MD simulations typically have a long range inter-
action resembling atoms or molecules, DEM short range
due to steric hindrance resembling e.g. granular media.
For each element Newton’s equations of motion are solved.
Therefore one has to calculate the forces acting on each
particle. In general this is the sum of single particle forces
like gravitation and forces due to particle–particle inter-
actions. Then the basic structure of such a simulation is:

1. Find all pairs of colliding (interacting) particles at a
given time step

2. Calculate forces for each interacting pair of particles
3. Solve Newton’s equations of motion
4. Goto 1.

Steps 1 and 2 can become a bottleneck of the simula-
tion, if inefficient algorithms are used.

Received: 7 April 1999

Alexander Schinner
Otto-von-Guericke-Universität Magdeburg,
Universitätsplatz 2, D-39016 Magdeburg, Germany
e-mail: schinner@acm.org

I would like to thank Hans-Georg Matuttis and Stefan Luding
for fruitful discussions.

The simulation of granular matter should reproduce as
many different experimental setups as possible and should
represent reality as closely as possible. A realistic simula-
tion should be able to predict observables that are not
measurable by experiment. Until now, most simulations
work with two-dimensional discs. This gives fast calcu-
lation of the distance of two particles. However, round
particles have some drawbacks. If rotation is allowed in
the simulation, round particles can roll very easily. This
changes the bulk mechanical behavior. The angle of re-
pose for heaps built from round particles is much lower
than for realistic rough particles.

There are approaches using elliptic particles, which
give more realistic simulations. Both for microscopic (force
network) and for macroscopic (stress–strain relation) ob-
servables Ting [1] showed that there are important dif-
ferences between round and elongated particles. However,
for calculating the collisions of two ellipses, one has to find
roots of polynomials. In general these polynomials are ill
conditioned, with spurious or inaccurate solutions for the
contact points, which leads to numerical problems.

Potapov and Campbell described a method for parti-
cles composed from segments of circles [2]. These particles
can approximate regular polygons well, the number of cor-
ners corresponds to the roughness of the particle; however
irregular shapes do not seem to be possible. As the paper
shows only monodisperse particles with an equal number
of corners it may be difficult to expand this algorithm to
polydisperse mixtures of particles with arbitrary rough-
ness.

A natural and flexible approach is to represent parti-
cles and walls by an arbitrarily shaped convex polygon.
As can be seen in Fig. 1, miscellaneous setups can be re-
alized. By using the algorithms presented in this paper,
simulations using polygons are not as time consuming as
one might assume.

1.1
Collision detection

The fast determination of all colliding particles is a diffi-
cult task. Techniques like Verlet-tables or neighborhood-
lists are most efficient for monodisperse simulations for
polydisperse setups they become inefficient. In section 3
the incremental sort-and-update algorithm will be
explained. The scaling of the time consumptionby this

36

Fig. 1. Dynamic and static simulations using polygons

method is “ideal” O(Ñ) where Ñ is the number of parti-
cles which have changed position, for every size distribu-
tion the algorithm is “optimal”. For static configurations
Ñ goes to zero.

This algorithm is not only applicable to polygonal par-
ticles in combination with bounding boxes, but can also
be used to speed up simulations of any particle system
with interactions of finite range.

1.2
Polygonal particles

The closest-feature algorithm is highly optimized for simu-
lations of polygonal particles. It is possible to calculate the
shortest distance between two polygons in constant time,
independent of the complexity of the particles. Moreover,
if the particles are overlapping one obtains the pair of in-
tersecting edges “for free”.

2
Overview

Discrete-element simulations of granular matter open a
window to a variety of fascinating and interesting phenom-
ena. Unfortunately, these methods are often time consum-
ing, so a lot of computational power is needed to expand
the simulation to large numbers of particles and long sim-
ulated times.

This paper will focus on two-dimensional simulations
of granular matter. There are standard techniques, which
are used to reduce computing time. However, these meth-
ods are restricted to special cases and reduce the general-
ity of the physical system. In this paper faster algorithms
will be presented which do not have these restrictions.

The underlying idea is to combine two algorithms in
the collision detection. The first algorithm (incremental
sort-and-update algorithm) reduces the number of “possi-
ble collisions”, the second one (closest-feature algorithm)
detects “non colliding” pairs of particles. As result one
obtains a list of all colliding particles.

The combination of the incremental sort-and-update
algorithm and the closest-feature algorithm does not de-
pend on the particle size. An arbitrary mixture of parti-
cles of any shape and number of corners may be simulated
without loss of efficiency. The algorithms are independent
of the force law, as long as there is a maximum range of
the interaction. The parallelization for these algorithms is
explained as well. Of course these techniques can also be
used to speed up standard simulations.

3
Collision detection with the Incremental
sort-and-update algorithm

Checking all pairs of Nparticles would require N2 tests.
Because the interaction is short-ranged, most of these pairs
will not contribute to the force calculation. So the most
important task for an efficient simulation is to reduce
the computing time dependency below O(N2) in order
to speed up the simulation of large systems.

3.1
Standard solutions

One standard method is to use neighborhood lists [3]. The
simulation area is divided into small areas using a grid.
For each particle, the mesh of the grid in which its center
of mass is located is determined. The time consumption
to locate a particle will be denoted by tmesh, the average
number of particles inside of a mesh is Nmesh, the time to
check whether a pair of particles collides is tcol. After a
location step each particle is checked against all particles
in the nine neighboring meshes, including the own, this
takes the time 9 · Nmesh · tcol. The total time needed to
detect all collisions is N(tmesh+9·Nmesh ·tcol). This means
that the number of particles per mesh should be as small
as possible.

However, if the mesh size becomes too small, collisions
may be undetected, which is unacceptable for a physical
simulation. For small mesh sizes, one also has to look for
particles in next-neighboring meshes. For dense monodis-
perse systems Nmesh can get close to unity (Fig. 2a), the
total computing time is N ·(tmesh+9·tcol). Hence the algo-
rithm is most efficient if the size of the mesh is as small as
possible, about the size of the largest particle in the simu-
lation. A problem arises if one has a polydisperse mixture
of particles. The size of the mesh is adapted to the largest
particle, as one can see in Fig. 2b. The smaller particles in
the neighboring cells increase the average number Nmesh.
In the worst case Nmesh ∼ N and the algorithm becomes
very inefficient.

3.2
Bounding boxes

The first step is to hide the particle shape from the colli-
sion detection algorithm. This is done by the use of bound-
ing boxes, which hide the complexity of an arbitrarily

37

Fig. 2. a Mesh on a monodisperse mixture of particles,
b Polydisperse mixture of particles

bx ex

by

ey

x

y
Particle Bounding box

Fig. 3. A polygonal particle and its bounding box. The bound-
ing box technique can also be employed for discs or ellipses

shaped particle by a simpler shape, which is designed to be
optimal for a given algorithm (Fig. 3). For the algorithm
presented here, the bounding box is a rectangle, whose
edges are parallel to the axes, the values bx, by, ex and ey

are sufficient to describe the box.
A bounding box BA for a particle A is every area for

which A is totally contained in BA. If two bounding boxes
BA and BB of two particles A and B do not overlap then
the particles itself do not overlap. Checking two bound-
ing boxes first and only calculating the overlap for the
polygons if the bounding boxes collide saves a lot of time.
Although the bounding boxes can speed up the pairwise
test, one does not get rid of the time consumption propor-
tional to N2, all pairs of bounding boxes have to be tested.

3.3
Incremental sort-and-update algorithm

The task for the “incremental sort-and-update algorithm”
is to reduce the time consumption to O(N) for arbitrary
kind of particles. The particles shape is “hidden” due to
the bounding boxes. The particle size does not matter and
polydisperse systems can be simulated efficiently.

To explain the algorithm, the one-dimensional case will
be treated first. Then the extension to higher dimensions
is described.

3.3.1
One dimension

In the one-dimensional case, the bounding boxes are in-
tervals on the X-axes.

Three bounding boxes can bee seen in Fig. 4, the list of
bounding box collisions contains only the pair of box #1
and box #2. The beginnings and endings of the bounding
boxes are marked on the axis. One has the sorted list of
these variables b1, b2, e1, e2, b3, e3.

In general, if

1. bm ≤ bn ≤ em ≤ en or
2. bm ≤ bn ≤ en ≤ em or
3. bn ≤ bm ≤ em ≤ en or
4. bn ≤ bm ≤ en ≤ em,

then the two bounding boxes #1 and #2 collide. From a
sorted list of all bi and ei one can check for the conditions
to be fulfilled and thus determine all collisions. This infor-
mation can be used by a “sort and sweep” algorithm to
generate a list of collisions at startup [4,5], this method is
not very good, since it is inefficient for increasing number
of collisions.

In order to avoid this, one can utilize that for a physical
system in a molecular dynamics simulation the particles
move a rather small distance between two steps. Instead
of generating a new list of colliding bounding boxes for
every step of the simulation, the old list is corrected.

Fig. 4 shows such a situation after the bounding boxes
have moved a small distance. The values for b1, e1, . . . all
have changed, but the new order of the boundaries in the
sorted list is nearly unchanged, only two pairs of bound-
aries have to be exchanged. As the ordering of the bound-
aries contains the complete information on all contacts,
each change in the ordered list means a change to the list
of collisions. Hence the information about the last step is
nearly correct and can be used as starting point for the
current time step.

To correct the order in the list of the boundaries one
uses “insertion sort”. Insertion sort is very fast for nearly
sorted lists [6] and performs only local exchanges. How-
ever, every exchange in the sorted list of boundaries can
change the overlap status of the two affected bounding

e2

2

b2

e1

1

b1 b3 e3

3

e2

2

b2

e1

1

b1 b3 e3

3

x

x

t

t+1

Fig. 4. Moving bounding boxes, the position of the upper and
lower points of the intervals are shown

38

Table 1. This table gives the rules for the repeated sorting
of a list of boundaries in one dimension. If, for example, two
“beginnings” are exchanged during the insertion sort run, the
list of collisions is unchanged

t t + 1 Collisional state
bmbn ⇒ bnbm collision remains in list
emen ⇒ enem collision remains in list
bmen ⇒ enbm collision is removed from list
embn ⇒ bnem collision is added to the list

boxes. The rules for the exchanges are described in Tab. 1.
These tests have to be performed for every exchange dur-
ing the resorting. The execution of the incremental sort-
and-update algorithm for the example in Fig. 4 is shown
in Tab. 2.

Since the time consumption of insertion sort is propor-
tional to the number of the elements for nearly sorted lists,
the list of all collision is updated in approximately N steps.

3.3.2
Two dimensions

Expanding this algorithm to two dimensions is straight-
forward. The projection of each bounding box onto the
axes gives two intervals with four boundaries bx, by, ex, ey.
Two bounding boxes are colliding if and only if the corre-
sponding intervals collide for both axis.

Once again, the collision status can change only if two
boundaries are exchanged during the resort. The incre-
mental sort-and-update algorithm is executed separately
for both axes.

If there are exchanges of two boundaries, the infor-
mation on the overlap status on the other axis becomes
important. If the corresponding intervals for the other axis
do not collide, no collision can occur. If the intervals on
the other axis collide, changes in the position can have an
effect.

What has to be done can be seen from Tab. 3. If one
exchanges 2 upper or lower points, the list of collision
remains unchanged as in the one-dimensional case. If one
has b1e2 ⇒ e2b1 one can simply mark this pair as “non
colliding”, again without having a look at the other axis.

Table 2. This table gives the complete incremental sort-and-update algorithm for the example shown in Fig. 4. The concept
for the insertion sort is simple. There is a sorted and an unsorted pile of elements. One element of the the unsorted pile is
taken (actual element) and compared with the elements (elements, one compares with, are underlined) of the sorted piles. One
starts with the rightmost element, if the actual element is larger than the element it is compared with, the correct place in the
sorted list is found, it is inserted there. If the actual element is smaller, one exchanges the elements and has to update the list
of collisions

Step Sorted Actual Unsorted Necessary Changes in
list element list exchanges collision list

1 b1 b2 e1 e2 b3 e3 b1 ↔ b2 none
2 b2 b1 e1 e2 b3 e3 – –
3 b2 b1 e1 e2 b3 e3 – –
4 b2 b1 e1 e2 b3 e3 e2 ↔ b3 add collision (2;3)
5 b2 b1 e1 b3 e2 e3 – –

b2 b1 e1 b3 e2 e3

Table 3. This table gives the rules for the repeated sorting
of a list of boundaries in two dimensions. If, for example, two
“beginnings” are exchanged during the insertion sort run, no
change to the list of collisions has to be done irrespective, of
whether the boxes are overlapping on the other axis

t t + 1 Non-overlapping Overlapping
intervals intervals
on the other axis on the other axis

bmbn ⇒ bnbm unchanged unchanged
emen ⇒ enem unchanged unchanged
bmen ⇒ enbm unchanged remove collision
embn ⇒ bnem unchanged add collision

Only for the last case, one has to check the position of
the bounding boxes for the other axis. If there is also an
overlap, the collision is detected and must be inserted in
the list of collisions.

The time consumption is twice as high as for the one
dimensional case but again proportional to the number
of particles, N . The algorithm does not depend on the
particle size, so that polydisperse mixtures of particles can
be simulated easily.

3.4
Examples

For the sake of completeness two of the worst cases for
the incremental sort-and-update algorithm in combination
with bounding boxes will be discussed:

In Fig. 5, a configuration of bounding boxes for elon-
gated particles is displayed. The large particle is marked
as a possible colliding partner with all the small ones.
However, the incremental sort-and-update algorithm will
not need any additional time to update the collision list.
The additional time to check whether the large particle
and all the small ones intersect is small due to the closest-
feature algorithm presented in chapter 4. In contrast to
the neighborhood lists no additional collision detections
between the small particles are necessary.

Fig. 6 shows the worst case for the underlying sorting
algorithm. The order of the beginnings and the endings are

39

Fig. 5. This figure shows the problem that can arise if an
elongated particles spans a large bounding box

t t+1

e4

4

b2b3 e3 x

3

e2

2

b1 e1

1

xb4 e4

4

b3 e3

3

b2 e2

2

b1 e1

1

b4

Fig. 6. Two time steps for which the order of the particles is
reversed

reversed. This leads to a sorting time proportional to N2

if only this tower is simulated. For practical applications
this case can be neglected1. It is not likely that such a
setup will occur during a normal simulation as whenever
the particles need more then one step of time to exchange
b and e, the algorithm again behaves well. Second, only a
single simulation step is proportional to N2, the following
steps will need N again. It is not possible to avoid these
cases, since computer science can prove that a worst case
always exists which cannot be solved better than N log(N)
[6]. However, one can select an algorithm, so that the worst
case for it is not very physically relevant and the typical
situation is near to the optimum of the algorithm.

A recent development of this incremental sort-and-
update algorithm is a vectorized implementation for use
on supercomputers [7].

4
Closest-feature algorithm

Polygonal particles are not in common use, because there
is a bias that “. . . the majority of the computer time is
spent calculating intersections of the sides of contacting

1 This setup might look similar to a shear cell. But inside of
a shear cell the number of particles T building the tower is in
general much lower than the total number N of particles. So
the sorting time will be proportional to T 2 � N2.

polygons which is a necessary part of the overlap deter-
mination. . . ” [2]. In this section it is shown that this is
not correct, one can simulate polygons efficiently, and a
realistic modeling using polygonal particles is possible.

The closest-feature algorithm presented in this chapter
calculates the distance during the simulation in constant
time, independent of the number of sides of the particles.
The method originates from virtual reality and motion
planning [8] and is adapted to two-dimensional granular
simulations.

4.1
Features and Voronoi region

A proper representation of the polygons is a crucial issue
for fast algorithms. Here the boundaries are represented
by the components of the polygon. These features are the
edges and vertices. In combination with the geometrical
setup one has a ring of vertices and edges (Fig. 7).

The algorithm keeps track of the closest features of
two convex polygons. Since this test uses only local infor-
mation, only few features are needed for the test, conse-
quently the complexity of the particles is not important.

One must not confuse an edge with a line and a vertex
with a point. Although the coordinates of a point are em-
bedded, a vertex is a complex structure containing more
information. It is important to distinguish between “in-
side space” and “outside space” for the edges. Hence the
edges have a direction defined in such a way that “inside”
is left to the line and “outside” is on the right.

Another relevant concept is the “Voronoi region”. A
Voronoi diagram is a partition of the plane into regions,
each of these is the set of points which are closer to a
point pi than to any other point pj 6=i. Using a Voronoi
diagram one can answer the question: Which point pi is
closest to a given point q? Dealing with features of the
polygons the concept can be extended to answer the ques-
tion: Which feature fi of the polygon P is closest to the
point q (outside of P)?

A Voronoi region associated with a feature is a set of
points exterior to the polygon which are closer to that
feature than to any other. The Voronoi regions form a
partition of the plane outside of the polygon.

Fig. 7. The decomposition of a polygon to a ring of vertices
and edges. Edges have a direction, so looking from the end of
the edge to the tip, the polygon is always to the left

40

Fig. 8. Construction of the Voronoi regions for an edge and a
vertex

For convex polygons a Voronoi region is an open area,
limited by two rays and the according feature (Fig. 8).
The rays start at the end of the edges, each ray is shared
by an edge and on of the neighboring vertices.

For the closest-feature algorithm, the polygon is repre-
sented by the combination of the features and the associ-
ated Voronoi regions. Every feature stores information on
the coordinates of one (vertex) or two points (edge), a link
to the neighbors (two vertices for an edge, two edges for
a vertex), for edges also the orientation, and a link to the
associated Voronoi region. The Voronoi region structure
has to contain information on the type of the associated
feature, some values to describe the bounding rays and a
link back to the associated feature.

The closest pair of features between two general convex
polygons is defined as the pair of features which contain
the closest points. Assume the polygons A and B which
are closed and bounded. The distance between A and B
is the shortest Euclidean distance dAB :

dAB = inf
PA∈A,PB∈B

|PA − PB |
The features fA, fB for which PA ∈ fA and PB ∈ fB

are the closest features of the polygons A and B [9].
The definition of the Voronoi region implies that if

point PA of feature fA lies inside the Voronoi region of fea-
ture fB and point PB of feature fB lies inside the Voronoi
region of feature fA then the points PA and PB are clos-
est points, hence fA and fB are closest features. For an
example see Fig. 9.

4.2
Find and track

Whether two features are closest or not is straightforward
if one uses the facts explained in the last section. Whether
two features fA and fB on polygon A and B with their
Voronoi regions VA and VB are closest, can be decided in
two steps.

First, one finds the pair of nearest points PA and PB

between two features. For the three possible combinations
(vertex–vertex, vertex–edge, edge–edge2) this can be cal-
culated by simple geometry.

The second step is to determine whether PA lies in-
side fB and vice versa. If this is true, one has the closest

2 Some special cases have to be considered, for example if
the edges are parallel, or a vertex lies on an edge.

PB

fA

fb

PA

Polygon A

Polygon B

Fig. 9. The closest points of the tested features (edge + vertex)
lie inside the Voronoi regions. The distance of the polygons is
equal to the distance of these points

points of the polygons and therefore their distance. It is
important to notice that only local information is neces-
sary. Every necessary information can be calculated by
information available from the features fA and fB and, in
case of an vertex, the left and right neighbor. This test is
completely independent of the number of features of the
polygons. This is the reason for the high efficiency of the
closest feature algorithm.

From the fact that one has a physical simulation one
can assume, that the polygons move only small distances
for each step of time. Although the closest points of two
objects will change continuously, two features will remain
closest for several hundreds of time steps [4]. For static
assemblies this time will even be larger. This means that
in most cases the closest features found in the last time
step are a good guess for the actual step.

Having found the closest features is one task, keeping
track of the closest features another. What happens if the
test for the closest features fails, because a point PA on
fA lies outside of the Voronoi region of feature fB , if it
“crosses” a boundary? If the point is outside of the poly-
gon3, according to the definition of the Voronoi region,
then the feature f ′

B sharing the violated boundary must
be closer to the point PA than fB . That way one should
repeat the test for the features fA and f ′

B . These steps are
repeated until the closest pair of features is found. Lin [9]
has proven that this algorithm will converge.

Outline of the algorithm:
Assume the features fA and fB on the polygon A and

B

1. Calculate the closest points PA and PB of the features
fA and fB .

2. Calculate the boundaries of the Voronoi region VA as-
sociated with fA

3. Check if PB is inside of VA. If not, replace fA by the
feature f ′

A associated to the violated boundary and
goto 1, else continue with 4.

3 If the point is below the feature some special cases have to
be considered, this is the worst case for the algorithm because
a complete check of all pairs of features may be necessary.
However, this case is rather rare.

41

boundary
Outside of

A

A

A A

B

B B

B B

A

v1

P1

P2 P3

e1

v1 P1

P2 P3

e1

Iteration #2

Polygon 1
Polygon 2

Iteration #3

Iteration #1

boundary
Outside of

Fig. 10. Three iterations are necessary to find the closest
features for this example

4. Calculate the boundaries of the Voronoi region VB as-
sociated with fB

5. Check, if PA is inside of VB . If not, replace fB by the
feature f ′

B associated to the violated boundary and
goto 1, else continue with 6.

6. Calculate the distance d of PA and PB

7. If d is equal to zero the features fA and fB intersect, so
the polygons are overlapping and the first intersection
has been found.

The algorithm will converge with O(n log n) where n
is the number of features. However the general behavior
of the algorithm is O(1), even for highly mobile systems

An example for a typical situation where the algorithm
is used, is given in Fig. 10. In the first iteration the start-
ing features may be vertex v1

A and edge e1
B . The closest

points P 1
A and P 1

B are calculated. Checking P 1
B against

the Voronoi region VA gives that the boundary associated
with v1

A and e2
A is violated. So this loop is aborted.

In the second iteration the test repeats with the fea-
tures e1

A and e1
B . Again, the closest points P 2

A and P 2
B are

calculated and P 2
B lies in the Voronoi region of e1

A. But
a boundary of the Voronoi region associated with e1

B is
violated.

The third iteration uses e1
A and v1

B as features. Once
more closest points P 3

A and P 3
B for the features are deter-

mined. Now both points lie inside the according Voronoi
regions so e1

A and v1
B are the closest features and P 3

A and
P 3

B are the closest points.

The run-time for the algorithm using different numbers
of features for the particles can be seen in Fig. 11.

5
Parallelization

Since simulations of this kind are time consuming even
with fast algorithms, the code is implemented to run on
cheap high-end shared memory workstations.

The appropriate method for parallelization on this kind
of machines is the use of Threads.

5.1
Threads

Threads are a powerful tool for parallelization on appro-
priate computers designed for symmetric multiprocessor
(SMP) architectures.4 This architecture has some striking
features. All processors are physically sharing the same
memory and have a single address space. The proces-
sors do not communicate by sending messages across a
network. They exchange, or rather share information, by
writing to and reading from memory.

A thread of control, or more simply a thread, is an
independent sequence of execution of program code in-
side a UNIX process. All threads share the memory of the

4 This kind of architecture is typical for “low-end”systems.
Other systems have NUMA (Non-Uniform Memory Access),
as used for example in the Cray T3E.

42

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

300250200150100500
Number of edges

A
ve

ra
ge

 ti
m

e
(µ

s)

Fig. 11. Here the time needed for one call to the closest feature
algorithm is shown. A Sun with a 200 Mhz Ultra2 processor
was used. The slight increase for larger number of corners is
due to the fact that more changes of the closest feature occur
during the simulation (up to 100 times)

same process. The threads within a process are scheduled
and executed independently in the same way as a nor-
mal UNIX processes. On multiprocessors, different threads
may be executed on different processors [10,11].

One can imagine a program as a string of commands.
The commands are executed one by one using one special
unit. Using threads, one has two or more of such units,
which work simultaneously. Two threads of a single pro-
gram have the same program and data, but different mem-
ory for local variables and different instruction counters. A
program starts with the main process. Then the program-
mer can create threads, which start to execute a given
function with given data. Then, inside of a thread, one
can of course call other functions, allocate memory, etc.
like in a normal C-program. If shared resources such as
variables can be modified, they have to be protected by a
mutual exclusion or mutex for short. If one thread T1 has
exclusive access to data, no other thread T2 can simulta-
neously access the same data.

The most important thing for efficient programs is the
organization of the data structures. According to the al-
gorithms used one has three fundamental structures. One
structure is for the representation of the particles. Here
variables like position, velocity and shape are stored; also
there is a mutex for protect the particle’s information.
These structures are organized in a linked list. The sec-
ond structure contains the bounding boxes. There are two
linked lists, one for the X-axis, one for the Y -axis. The
third type of structure represents a collision. This struc-
ture is for both bounding box collision and particle colli-
sion. If a collision for particle i and j (i < j) is found one
keeps the structure for this collision in a small linked list,
appended to the structure for particle i. So searching for
a collision is much faster than in a long global list.

For the bounding-box algorithm explained in section 3,
parallelization using threads can be performed in the
following way. For the sake of simplicity, the code is sub-
divided into two threads, one for each axis. Since the infor-
mation on each collision can be changed by both threads,
the particle’s mutex is necessary to guarantee the integrity
of the data. However, most of the time, the two threads
do not have to wait. The result is an actual list of possible
particle-particle collisions.

To calculate the distance using the closest feature al-
gorithm the threads have to read only from the struc-
tures of both particles, which are not changed in this
step. The information is written to the structure of the
collision, but by the program design it is guaranteed that
no other thread reads information from there. So we do
not need any mutex, both threads are completely inde-
pendent. When both threads are finished, the information
about which particles are colliding is stored in the collision
structures.

In the next step the force from each collision has to be
determined. Therefore the overlap area for each particle
pair is calculated. For these calculations one needs only
information stored in the structure of the collision. Again,
the list of all particles is split and each thread works on
the according collisions. Information needed for the cal-
culation of the force is not changed in this step, reading
information does not require any mutex. But to sum up
the total force for each particle is dangerous. It is possi-
ble that another thread is also working on a collision the
particle is involved in. Hence the summation of the forces
has to be protected with the particle’s mutex. However,
since this event is unlikely one does not lose much time.

When a Gear predictor-corrector method is used for
solving the differential equations [3,12] one needs a pre-
dictor and a corrector step. The first predicts position and
velocity for the particles. Then one has to calculate the
forces and the second step can correct position and ve-
locity. Both predictor and corrector only read and write
information inside a particle’s structure. So there is no

#2Thread#1Thread

Corrector

calculation
Force

algorithm
Closest-feature

X-axes
Bounding-box

Predictor

Corrector

calculation
Force

algorithm
Closest-feature

Y-axes
Bounding-box

Predictor

t

1
tim

e
st

ep

Mutex

Mutex

Synchronization

Synchronization

Synchronization

Synchronization

Synchronization

Fig. 12. Basic structure of the algorithm for two threads. The
combination of the incremental sort-and-update algorithm and
closes-feature algorithm is shown, necessary uses of mutex vari-
ables are given

43

need to protect the data by a mutex. Hence the list of
particles is splitted and calculated by threads.

The outline of the parallel version of the algorithms
can be seen in Fig. 12. Using the parallel version of the
program on two processors gives an speedup of about 1.9
to 1.95 in contrast to the serial code. These values have
been measured under working conditions, the computer
doing this simulation was also working as file server.

6
Conclusion

Different methods for speeding up a discrete element
method have been shown. The incremental sort-and-update
algorithm is an improvement over Verlet tables and neigh-
borhood lists. The algorithm is suitable for all kinds of
interactions with finite range. The closest-feature algo-
rithm calculates the distance of two polygons in constant
time based on a good guess from the last step, so that
the collision detection is not longer the bottleneck for the
simulation of polygonal particles. Both algorithms can be
parallelized using threads, so common multiprocessor work-
stations can perform highly sophisticated simulations of
granular matter [13].

References
1. John M. Ting, Jeffrey D. Rowell, and Larray Meachum,

Influence of particle shape on the strengh of ellipse-
shaped granular assemblages. In John R. Williams, edi-
tor, Proceedings on the 2nd Interantional Conference on
Discrete Element Methods (DEM), pages 215–225, Cam-
bridge, Mass, 1993. IESL Publ.

2. Alexander V. Potapov and Charles S. Campbell, A fast
model for the simulation of non-round particles. Granular
Matter, 1/1:9–14, 1998

3. M. P. Allen and D. J. Tildesly, Computer Simulation of
Liquids. Clarendon, Oxford, 1987

4. A. Schinner, Numerische Simulationen für granulare Me-
dien. Master’s thesis, University of Regensburg, 1995

5. D. Baraff, Rigid body simulation. In Course 60, An in-
troduction to Physically Based Modelling, ACM Siggraph,
pages H1–H68, 1993

6. Sedgewick, Algorithmen. Addison-Wesley, 1992
7. Hans-Georg Matuttis. private communication
8. M. C. Lin and D. Manocha, Interference detection be-

tween curved objects for computer animation. Models and
Techniques in Computer Animation, pages 43–57, 1993

9. M. C. Lin, Efficient Collision Detection for Animation and
Robotics. PhD thesis, University of Californa at Berkeley,
1993

10. S. Kleinman, D. Shah, and B. Smaalders, Programming
with Threads. SunSoft Press A Prentice Hall Title, 1996

11. B. Nichols, D. Buttla, and J. P. Farrell, Pthreads Program-
ming. O’Reilly & Associates, Inc., 1997

12. C. William Gear, Numerical initial value problems in or-
dinary differential equations. Prentice-Hall, Englewood
Cliffs, NJ, 1971

13. Alexander Schinner, Movies on granular matter.
http://itp.nat.uni-magdeburg.de/∼schinner/granular/
movies.html

