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Influence of the geometry on the pressure distribution
of granular heaps
Hans-Georg Matuttis, Alexander Schinner

Abstract We investigate the effect of the geometry of
granular heaps on the pressure distribution. For given
pressure distributions under cones we compute the pres-
sure distribution under wedges using linear superposition.
For cones with a pressure minimum, the pressure mini-
mum for the corresponding wedge vanishes. Comparisons
with experimental data gives good qualitative aggreement,
but the total pressure is overestimated.

1
Introduction

In recent years, pressure distributions under heaps of dry
grains have received much attention [1–8] due to the pres-
sure minimum which was observed experimentally in gran-
ular cones without bed displacements [9–13]. In granular
wedges, no [14, 15] or only small [9] pressure minima could
be observed. Brockbank and Huntley [13] found exper-
imentally a pressure dip in cones, except for large (non-
cohesive) polydisperse particles. In granular matter, many
effects such as the grain’s material, Young’s modulus, sur-
face roughness, coefficient of friction and history of the
construction influence the properties of heaps [10, 16]. Due
to the rich phenomenology, the pressure distribution un-
der a heap has become a kind of paradigm in granular
media research. In this paper, we focus on the effect of
the shape of sand-heaps on the pressure distribution by
taking into account only the geometry of the heaps.
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2
Overview

To simplify matters, we will assume a homogeneous den-
sity of the heaps, and we also assume that the mass density
in the cone is the same as the mass density in the wedge.
Later on, we will question this assumption in the compar-
ison with experimental data, but for the simplicity of the
derivation the densities will be set to unity.

Because experimentally the angle of repose is practi-
cally the same for wedges as for cones, we do not use the
angle of repose α,

h

r
= tanα (1)

of the heap of hight h and base length 2r explicitly.
We assume that when we go from a cone to a wedge,

there is neither a change of the constitutive equations, nor
in the internal structure and only geometric effects come
into play. We use a phenomenological approach to com-
pute the contours and pressures via linear superposition
under the assumption that “nothing else” changes, see Fig.
3. This approach of “all things being equal” eliminates
effects from e.g. the constitutive equations, the material
parameters or the micro-structure and we only observe
effects based on the geometry. We do not propose that
the situation is really as simple as that. The superposi-
tion principle for pressures itself is valid also for linear ho-
mogeneous partial differential equations (PDE’s). PDE’s
have been widely used in theories on the stresses in static
granular materials [17–20]. Using the superposition prin-
ciple, we derive why no significant pressure dip7 can be
found under granular wedges with non-deformed bottoms
[16], though there are several experiments with pressure
dips under granular cones [9–13].

In the next step, we apply this method to experimen-
tal data. We compare the pressure measurement under
a wedge with the theoretical prediction from our theory
which uses the cone pressure for the same material as
starting point. We obtain the correct qualitative pres-
sure distribution, but the theory overestimates the total
weight.

3
Superposition of cones

In this section, we show how to integrate over the contour
of a cone in order to obtain the contour of the wedge, and
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Fig. 1. Building a wedge out of cones for the heap shape
(above) and the corresponding pressure distribution (below).

The resulting pressure is given as the intensity of the point
clouds

which normalizations are possible to conserve either the
height or the volume.

3.1
Integration of cones

The contour of the heap is position-dependent and (see
Fig. 3) has the dimension of a length. We will denote the
maximum height of the heap as h. If the contour Ccone of
a cone with diameter 2r and maximum height h is given as
Ccone = Ccone(x, y), one can obtain the contour Cwedge of
a wedge (see Fig. 2) with base width 2r by superposition
as

Cwedge(y) =
1
2r

∫ √
1−(y/r)2

−
√

1−(y/r)2
Ccone(x, y)dx. (2)

Cwedge(y) depends only on y and not on x due to the trans-
lation invariance of the wedge along the x-axis. Eq. (2) is
an average over the contour along the x-direction.
The prefactor in Eq. (2) 1

2r enters in front of the integral,
because the units of the integration increment dx must
be compensated. In terms of units, a prefactor ∝ 1

r is the
only possibility to fulfill the condition that the contour of

Fig. 2. Sketch for the integration process for a cone: Averaging
over the hight distorts the straigt slopes of the cone

Fig. 3. Outline of a cone with straight slopes and a wedge
constructed by infinitesimally adding cones with straight slopes
in a gedanken experiment

the wedge has the same units as the contour as the cone,
which, as has been mentioned above, has the dimension
of a length. The dimensionless prefactors to preserve the
mass or the height of the heap will be discussed in sec-
tion 3.2.

The integration bounds ±
√

1 − (y/r)2 in Eq. (2) re-
sult from the circular base of the cone and depend on the
geometry at the base of the heap. For the integration of
a pyramid with a square base of 2r × 2r, the integration
would range from −r to r. (see subsection 3.3 and Fig.
6). In the following text, we take the radius of the cone
(and therefore the width of the wedge) to be r = 1 for
simplicity, so

x/r → x (3)
y/r → y (4)

h → r (5)
C ...(x, y)/h → C...(x, y). (6)
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Fig. 4. Averaging the cone to a wedge with normalization
factor 1/2r reduces the height of the heap from 2h to h in the

middle of the wedge

The old names will be retained for the new quantities. Any
prefactors for the height of the heap or the angle of repose
will be omitted, because due to the normalizations in sec-
tion 3.2, the height of the wedge is given automatically by
the height of the corresponding cone. All functions for the
contours and pressure will be 0 outside the heap.

If a wedge is built by infinitesimally integrating cones
with straight slopes,
Ccone(x, y) = 1 −

√
(x2 + y2) (7)

the profile of the wedge Cwedge(y) can be described as

Cwedge(y) =
r

h

√
1 − y2 − y2 ln(

√
1 − y2 + 1)
2

+
y2 ln(−

√
1 − y2 + 1)
2

, (8)

which is plotted in Fig. 3. This seems to be still a rea-
sonable approximation for the slopes of a “wedge”. This
wedge constructed from a cone with straight slopes has
no straight slopes, because one has to integrate different
conical sections at each y. “On average”, the critical angle
is nevertheless preserved.

3.2
Possible normalizations

Eq. (2) corresponds to an average along the x-axis and the
normalization of 1/(2r) conserves the cross-section area
along the x-axis of the cone. As this cross-section is tri-
angular, but the section along the x-axis of a wedge is
rectangular, the height of the wedge will be only half of
the height of the cone, see Fig. 4. One has to choose the
prefactors depending on whether one wants to preserve
the height of the cone or the mass per volume. Both are
different because the cross section of the cone does not
coincide with the cross section of the wedge, see Fig. 3.

In the following sections, we will use the prefactor 1/r
for wedges instead of 1/(2r) for Eq. (2) so that the wedge
has the same height as the cone. This leads to a normal-
ization factor of 2 in from of the integral of Eq. (2). As can
be seen by Fig. 3, the geometry is not preserved, therefore
the mass is not conserved properly. To guarantee, that
Mwedge

M cone =
V wedge

V cone (9)

for the pressures, one has to choose the normalization fac-
tor not as 2 but as
V wedge

V cone =
2r2h

π/3r2h
=

6
π

. (10)

This leads to a normalization factor of 6
π instead of 2 in

comparison to the normalization with the height of the
heap.

3.3
Superposition of non-conical heaps

The only geometric figure which in an averaging procedure
such as Eq. (2) preserves the triangular cross section is a
wedge with straight slopes and square bottom (Fig. 5).
The integration of pyramids (Fig. 6) with a square basis
leads to a “wedge” with parabolic slopes, as can be seen in
Fig. 7. The integration limits in Eq. (8) must be changed,
so that

Cpyr.wedge(y) =
∫ 1

−1
Cpyramid dx (11)

=
∫ 1

−1
1 − max(|x| , |y|) dx (12)

4
Superposition of pressures

The pressure distribution can be obtained by superposi-
tion in the same way as the contours. We investigate the
superposition of different pressure curves to see how the
change from the cone to a heap affects the pressure distri-
bution.

The x-dependence of the pressure in the wedge can be
dropped due to the translation invariance like for the con-
tours. For simplicity, we take the radius of the cone (and

Fig. 5. Only the integration of a wedge with straight slopes
again yields a wedge with straight slopes
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Fig. 6. Sketch for the integration process for a pyramid

therefore the width of the wedge) to be 2r = 1. Any pref-
actors for the normalization of the heap will be omitted
for the qualitative discussion in this section.
If the pressure under a cone with radius r is given as
P cone = P cone(x, y), one obtains the pressure under the
corresponding wedge by linear superposition as

Pwedge(y) = 2
∫ √

1−y2

−
√

1−y2
P cone(x, y) dx. (13)

This relates the total pressure under the cone to the total
pressure under the wedge, so that the masses computed
via the pressure distribution are also directly related.
Different pressure distributions represent different mate-
rials. At least in two dimensions, different “building his-
tories” of the heap also crucially influence the pressure
distribution [8]. The integration of the heap contour itself
is a purely geometric concept which results from the su-
perposition principle for PDE’s and is in no way related
to a “physical” building up of the heap.

4.1
Masses of the heap

The masses of the heap can be derived via the pressure on
the ground. The ratio for the volume of a cone to a wedge
is 1 : 2 for the height normalization in Eq. (13). Because
we assume that the density in the wedge is the same as
the density in the cone, 1 : 2 is also the ratio between the
masses of the cone to the wedge. This must also be true
for the masses as computed via the bottom pressures. The
mass of the cone is

M cone =
∫ y=+1

y=−1

∫ √
1−y2

−
√

1−y2
P cone dx dy (14)

The mass of the wedge is

Mwedge =
∫ y=+1

y=−1

∫ x=+1

x=−1
Pwedge(y) dx dy (15)

= 2
∫ y=+1

y=−1
Pwedge(y)dy (16)

= 2
∫ y=+1

y=−1

∫ x=
√

1−y2

x=−
√

1−y2
P cone(x, y) dx dy (17)

= 2M cone. (18)

Therefore, for linear superposition the proportion between
the total weight of the wedge and the cone Mwedge/M cone

is independent of the detailed pressure distribution. The
derivation from the masses from the volumes is analogous,
only the pressures have to be replaced by the product of
the volume and the density.

4.2
Zero pressure under the apex of the cone

In the following, we will use the Heaviside function

Θ(x) =
{

0 , x < 0
1 , x ≥ 0,

(19)

and the error function

erf(x) =
2√
π

∫ x

0
exp(−t2)dt. (20)

If one chooses a pressure distribution for the cones con-
structed from triangles (similar to the one proposed in [20]
for two-dimensional heaps, see Fig. 7) according to

P cone
1 (x, y) = |y|Θ(−y + 0.5)Θ(y + 0.5)

+ (1 − |y|) (1 − Θ(−y + 0.5)Θ(y + 0.5)) ,

(21)

the pressure distribution of the wedge will be

Pwedge
1 (y) =

√
1 − y2 − 0.5y2 ln(

√
− (y − 1) (y + 1) + 1)

+ 0.5y2 ln(−
√

− (y − 1) (y + 1) + 1)

− 0.5Θ(−y + 0.5)Θ(y + 0.5)
√

1 − 4y2

+ y2 ln(0.5
√

− (2y − 1) (2y + 1) + 0.5)
× Θ(−y + 0.5)Θ(y + 0.5)

− y2 ln(−0.5
√

− (2y − 1) (2y + 1) + 0.5)
× Θ(−y + 0.5)Θ(y + 0.5). (22)

Fig. 7. Outline of the pyramid with square base and the
“wedge” constructed from that pyramid via integration
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Fig. 8. Pressure distribution under a cone and pressure dis-
tribution under the corresponding wedge

The pressure under the middle of the cone vanishes,
whereas the pressure distribution of the wedge retains a
relative minimum only where the pressure is about 80 per-
cent the pressure of the maximum. The area under the
curve is of course larger because the weight of a wedge of
length r is larger than the weight of a cone with the same
cross section.

4.3
Gaussian pressure distribution

If one chooses the pressure distribution of the cone as
Gaussian, so that there is a maximum in the pressure dis-
tribution of the heap, e.g.

P cone
3 (x, y) = e−a( y2− x2), (23)

the resulting pressure distribution is an error function (see
also Fig. 8):

Pwedge
3 (y) =

√
πerf(a

√
1 − y2)

aea2y2 . (24)

The profile of the pressure curve has not changed much,
but the pressure under the wedge is a bit flattened out
compared to the cone, as can be seen in Fig. 8.

4.4
Flat pressure in the middle

If one chooses the pressure distribution as flat in the mid-
dle, e.g.

P cone
4 (x, y) = e−ay4

, (25)

which models quite well the pressure in the middle of some
of the heaps which were used by Liffman et al in [3, 4], then
the resulting pressure distribution for the wedge becomes

Pwedge
4 (y) = e−ay4

∫ √
1−y2

−
√

1−y2
e−ax4

dx. (26)

Hence the pressure profile for a flat pressure in the middle
is practically the same for a cone and for a wedge, as can

Fig. 9. Pressure distribution under a cone and pressure distri-
bution under the corresponding wedge for Gaussian pressure
and no dip in the middle

be seen from Fig. 9 where the curves are plotted with
a = 5.0625.

4.5
Minimum in the middle using Gaussian distributions

If one constructs a wedge with a pressure minimum, which
can be modeled by superimposing Gaussians such as

P cone
5 (x, y) = e−a2(y2−x2) − ce−b2(y2−x2), (27)

the resulting pressure for the cone is

Pwedge
5 (y) =

√
πerf(a

√
1 − y2)

aea2y2

−
√

πerf(b
√

1 − y2)
beb2y2 (28)

The pressure distribution for a = 2, b = 8, c = 0.5 is
plotted in Fig. 10. Parabola-shaped pressure distributions

Fig. 10. Pressure distribution under a cone and pressure dis-
tribution under the corresponding wedge for Gaussian pressure
and no dip in the middle
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Table 1. Relative weights of the heap for the experimental and predicted heaps in Fig. 11.

Curve Experimental Prediction, Volume Normalization Prediction, Height Normalization

Weight 1.0 1.15 1.21

behave similarly in the middle. Only the distribution near
the border is slightly differerent for wedges and cones.

5
Comparisons with experiments

The above arguments are only qualitative. The validity of
the reasoning can only be judged by a comparison with ex-
periments. One cannot expect quantitative agreement, but
one should expect qualitative agreement. The only exper-
iment which allows a verification of the above predictions
is the paper by Hummel in ref. [9]. The results have been
questioned in a theoretical paper by [21], but other studies
like [16] consider the experiment as reliable. There are ex-
periments in which particles are dropped from some height
into a silo, and the density in the middle of the silo, where
a kind of “funnel” of high density is formed, is larger than
near the walls [22]. The situation may be the same here.
However, the filling process was a bit different, because in
[9], it was explicitly stated that the dropping height was
held constant to avoid exactly this kind of effect.

We reproduce the original data for the cone “A” in
[9] with 18 inches height, the data for the wedge with 17
inches height and our predictions in Fig. 11. We kept the
units from Hummel for the annotation for the y-axis, so
that the pressure is measured in “inches of sand”.

We used two different normalizations: One normaliza-
tion was chosen to give the same height for the wedge as
for the cone. To monitor the effect that the wedge from
linear superposition has not straight slopes, we also nor-
malized one pressure curve according to Eq. (10) in such
a way that the volume was conserved to allow for the

Fig. 11. Pressure distribution under a cone and pressure dis-
tribution under the corresponding wedge for a pressure distri-
bution with the minimum modeled by two Gaussians

difference in the profiles of the heap. We used linear inter-
polation for the three dimensional numeric integration of
the measurement data, but cubic interpolation gave prac-
tically the same shape.

The qualitative correspondence is remarkable for such
a handwaving theory, the small dip for the wedge is re-
produced reasonably well from the cone data. The total
magnitude deviates strongly. The relative weight which
can be computed for the heap can be seen in Table 1.

6
Conclusions

We have attempted to compute the pressure under gran-
ular wedges by the linear superposition of granular cones.
This was not done to claim that the pressures or stresses
in granular aggregates can actually be described by linear
superposition, but in an attempt to keep the necessary
mathematical operations as simple as possible and to ob-
tain parameter–free predictions.

Even in the most simple case of linear superposition
of pressures, the pressure distribution of cones seems to
differ markedly from that of wedges.

It has been concluded from experiments that the con-
struction history is not important for the pressure distri-
bution in wedges: “The result for the three types of loading
sequence were, within experimental accuracy, identical.”
([14], cited after [23]). This can be easily explained by the
averaging effect along one axis of the heap. Therefore, one
cannot conjecture that the construction history is unim-
portant for cones as well. The effect of the construction
history in 2D heaps has recently been investigated in [8].
The static indetermancy of frictional contacts may influ-
ence the macroscopic observables of cones, whereas this
effect will probably not be noticeable for wedges.

Two-dimensional geometries seem to be more similar
to cone geometries, not to wedge geometries because there
is no averaging along one axis. Therefore, the variety of
pressure distributions is larger, ranging from dip’s to prac-
tically flat distributions [8]. Experimentally, two-dimen-
sional simulations describe the cut through an aggregate
of two-dimensional rods, which is experimentally imple-
mented by the so-called “Schneebeli-material” as used in
[24]. The absence of the pressure dip under wedge experi-
ments and its existence under cone experiments can there-
fore be explained by purely geometric reasons.
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