
A Novel Approach to the Simulation
of Particles on a Large Size-Range

Alexander Schinner

Otto-von-Guericke Universität Magdeburg,

Germany

1997



MD-Simulation of granular materials

⇓

slowly changing system

⇓

The last time-step’s information is nearly correct.

⇓

Reuse this information as good starting conditions.

The steps of our MD-simulation

1. Check for bounding box collisions

2. Check for particle collisions

3. Calculate overlap

4. Do the physics (not discussed here)















y

Increasing

need of

time

Try to exclude as many particle-pairs as possible

from being considered in the next level.



Bounding Boxes

First consider the one dimensional case:

I7

b7 e 7

I2

b2 e 2

I5

e 5 8e

I1

b1 e 3 e 4 e 6 e1

I4

7

b 4 b5b8

I8

b3

I3

b6

I 6

b b b b b b b4 5 2 6 7 1 3e 8e e e e e e eb8 5 2 3 4 6 1

• Resorting the List of Boundingbox boundaries is

possible with O(N) steps, if we use Insertion

Sort

• During the sorting we can update the list of all

collisions

⇒ Total cost of O(N).



Closest Feature Algorithm

• Calculate distance of particles

• keep track of the closest features

• local test to confirm the distance



Feature

Edge

Vertex

Polygon

decompose

A feature has information on its

• type (edge or vertex)

• geometry

• neighbors

• Voronoi regions

• and more...



Voronoi Region

If a point p lies inside the Voronoi region of a

feature fa, then

dist(p, fa) ≤ dist(p, fb)

region
Voronoi-

region
Voronoi-

This divides the space outside a particle:

inside



Closest features

If a point P on object P1 lies inside the Voronoi

region of f2 on object P2, then f2 is a closest

feature to the point P and vice versa for an Voronoi

region of f1. If we have a pair of features fulfilling

the above condition, we have a pair of closest

features.

particle 1
particle2



Closest Feature Algorithm

We are looking on two features f1 and fb on two

polyhedra P1 and P2.

1. Calculate the Voronoi regions V1 and V2

2. Calculate a point p1 on f1 that is the closest to

f2 and a point p2 on f2 that is the closest to fa

3. Check for p1 ∈ V2. If not: choose new f1 and

restart algorithm

4. Check for p2 ∈ V1. If not: choose new f2 and

restart algorithm


