
Introduction

The most time consuming part in molecular
dynamics simulations of arbitrary size is the collision
detection. Usually, this problem is solved by
restricting the shape of the particles to spheres.
We will present an algorithm, originally developed
for virtual reality visualizations by D.Baraff(1993)
and M.C.Lin(1993), that allows the use of complex
polyhedra (up to 920 faces and more). The expected
run time is O(N), where N is the number of particles
in the simulation. Neither complexity nor shape of
the particles affect the run time.

How can this be achieved, if the run time for
sorting general lists is O(N log N + k)? The crucial
feature of the algorithm is to use information from
the last time step.

The algorithm consists of two parts. In the
first step, the algorithm looks for collisions of the
particles bounding boxes. These are detected by
resorting the list of all boxes. Insertion–sort allows
sorting in O(N) operations. The second step is a
fast method to compute the distance between two
polyhedra by finding and tracking the closest points.
In MD simulations, this algorithms is so efficient that
the amount of required CPU time is independent of
the particle shape.

Bounding Boxes

Figure 1: Different kind of bounding boxes for a
Polygon. Choosing the “best one” asks to weigh up
size versus calculation time

Generally any box BA can be called a bounding-
box of particle A, if A is inside of BA (A ⊂ BA).
Here we assume rectangular bounding boxes, aligned
with the coordinate axes.

The sense of using bounding boxes is to enable a
fast check for NON-collision of two particles A and
A′. If there is no point x ∈ R3 with x ∈ BA∧x ∈ BA′

then there is no point x ∈ A ∧ x ∈ A′ because of
A ⊂ BA,A

′ ⊂ BA′.

The one-dimensional case

First we treat the problem in one dimension. The
bounding boxes are now intervals [bi, ei] for the ith
particle. We have now to search for every pair of
intersecting intervals [bi, ei] and [bj, ej]

This can be solved with a sort and sweep
algorithm (see Baraff(1993)) by generating a sorted
list of all bi and ei values and sweeping the list. By
means of this, one obtains a list of active intervals.
When sweeping the list, you have to follow two rules:

1. If some value bi is encountered, all intervals
on the active list are known to be overlapping i and
i is added to the active list.

2. If some value ei is encountered, i is removed
from the active list.

For the example in figure 2 we will get the list
b8 − b4 − b5 − e5 − b2 − . . .− e7 as input to the sort
and sweep algorithm.

i Li action Lact.(old) collisions found
1 b8 insert 8 — —
2 b4 insert 4 8 (4;8)
3 b5 insert 5 8− 4 (5;8), (5;4)
4 e5 delete 5 8− 4− 5 no check
5 b2 insert 2 8− 4 (2;8) (2;4)

...
16 e7 delete 7 7 no check

5

b b b b b b b4 5 2 6 7 1 3e 8e

I

e

8

e e e e eb8 5 2 3 4 6 1 7

I
I1

I
I

2
3

4

I 6

I7
I

Figure 2: Example of intervals in one dimension.

The total cost of the process is O(n logn) to sort
the list, O(n) to sweep through the list, and O(k) to
output each overlap. Obviously the problem’s most
time consuming part is the sorting algorithm.

In a MD-simulation, the particles will not move
very far between two time steps, so the sorted list of
intervals will not change dramatically.

I7

b7 e 7

I2

b2 e 2

I5

e 5 8e

I1

b1 e 3 e 4 e 6 e1

I4

7

b 4 b5b8

I8

b3

I3

b6

I 6

b b b b b b b4 5 2 6 7 1 3e 8e e e e e e eb8 5 2 3 4 6 1

Figure 3: Moving intervals in one dimension.

There is a sorting routine, which in particular
cases can be better than O(n logn). Insertion sort
insertion sort1 can be very fast for nearly sorted lists.
Such an algorithm takes time O(n+c)) where c is the
number of exchanges necessary. We can maintain a
table of overlapping intervals at each time step. This
table can be updated with a total cost of O(n+ c).
In a normal MD-simulation the number of exchanges
c will be close to the number k of changes in the
overlap status, and the extra O(c − k) work will be
negligible.

Extension to three dimensions

The three dimensional problem is more
complicated than the one-dimensional case. We have
three independent intervals aligned along coordinate
axis. Now, our first step is to sort three lists, one for
every axis. This will need O(n+ c) operations. For
every exchange in any list, we will check the change
in the overlap status. The cost of this operation
is O(n + c). The extra work for each pair, which
doesn’t change the status, will be O(n − k), but in
real simulations the extra work can be found to be
completely negligible. The relationship k ≪ n holds
so the algorithm will perform essentially with O(n).

1In general insertion sort may need up to O(n2) operations!

Closest-feature-algorithm

The main idea is to utilize convexity to establish
some local applicability criteria for verifying the
closest features of two polyhedra. This algorithm was
developed by Lin (1993) for problems in animation
and robotics.

Voronoi regions

A Voronoi region Vf associated with a feature f

of a polyhedron P is a set of points exterior to P

which are closer to that feature than to any other.

E
HE

N FT
Object A

F

Voronoi Region

Voronoi Region
Voronoi Region

Object A
Object A

Figure 4: Typical Voronoi region for a vertex, an
edge and a face.

If a point p on object PA lies inside the Voronoi
region of fB on object PB, then fB is a closest
feature to the point P and vice versa for an Voronoi
region of fA. If we have a pair of features fulfilling the
above condition, we have a pair of closest features.

The algorithm

We are looking on two features fA and fb on two
polyhedra PA and PB.

1. Calculate the Voronoi regions VA and VB

2. Calculate a point pA on fA that is the closest
to fB and a point pB on fB that is the closest to fa

3. Check for pA ∈ VB. If not: choose new fA
and restart algorithm

4. Check for pB ∈ VA. If not: choose new fB
and restart algorithm

If this algorithm terminates, we have two features
fA and fb which are the closest possible pair for the
polyhedra PA and PB. If step 2 or 3 fail, we must
choose a feature, so that the distance d(fA, f

new
b <

d(fA, f
old
b). In this case, we are moving around the

minimum of the distance function, in which we may
become trapped. There is a proof by Lin (1993), that
it is possible, to find these features in constant time
and that for any pair fA and fB the algorithm will
converge in O(n2) time (n = number of features).

The main problem is now to choose a new f so
that d(fA, f

new
b < d(fA, f

old
b) is valid. The main

idea is to chose the feature belonging to the violated
Voronoi plane. But there are also a few special cases
which aren’t discussed here.

Real simulations

In a normal MD-simulation we can store the
closest pair and reuse it as starting point for the
next time step. In this case, since we have a local
test, we will normally have only 1 or 2 iterations
for the algorithm, the run time will be independent
of the polyhedra’s shape. This can be observed
in numerical simulations. For the table below,
the algorithm calculates the distance between two
rotating particles 100000 times. The particle size and
the number of iterations is shown. The calculations
where performed on an IBM Power 2 Workstation.

Figure 5: Some typical shapes (up to 462 faces).

faces tot. 1 it. 2 it. 3 it. 4- it. µs

4 14 98290 1430 259 20 63

8 26 99803 196 0 2 83

20 62 99497 465 36 2 71

32 98 99703 296 0 1 69

40 122 99702 222 75 1 72

80 242 99164 737 97 2 76

100 302 99563 292 144 1 70

140 422 99486 436 77 1 63

160 482 99442 549 8 1 70

200 602 99361 630 8 1 78

400 1202 98907 1057 35 1 74

600 1802 98271 1667 57 5 78

920 2762 97661 2217 112 10 58

0

20

40

60

80

100

0 500 1000 1500 2000 2500 3000

t
/
1
0
e
-
6

s

Zahl der Polyederbestandteile

Figure 6: Computing time for different number of
polyhedra features.

Conclusion

We have presented an algorithm, originally
developed for virtual reality visualizations by D.Baraff
and M.C.Lin, that enables us to use arbitrary
convex polyhedra. The expected run time is O(N).
The algorithm consists of two parts. In the first
step, collisions of the particles’ bounding boxes are
detected by resorting the list of all boxes. The
second step is a fast method to compute the distance
between two polyhedra by finding and tracking
the closest points. The expected constant time
consumption results from the fact that each update
of the closest feature pair involves only the constant
number of neighboring features. The algorithm
results from the incremental nature of Lin’s approach
and the geometric coherence between successive,
discrete movements.

References

Baraff D (1993), Course notes 60 for the ACM
SIGGRAPH 1993, An Introduction to Physically
Based Modeling

Lin M.C. (1993), Dissertation, Efficient Collision
Detection for Animation and Robotics

Schinner A. (1995), Diploma thesis, Numerische
Simulationen für granulare Medien

