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Shapes for granular heaps:

Wedge /
N

N\
AN

2

Outline of the problem:

— Many “generic” Models for the pressure distribution under
granular heaps are possible.

— A-Priori Calculation on the particle level without any macro-
scopic modeling = Molecular dynamics simulation

Difference between cones and wedges:

Gedankenexperiment [4] . Pressures for cone and wedge
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Effects of Cohesion [5]:

— Pouring the heap from a point-like source leads to wedge-

sequence type of heaps as expected

— For strongly cohesive materials layering occurs even for point-

— In experiment, granular cones show a pressure dip, but not
granular wedges.
— Is there a dip at all, and why?

Simulation results [1,3]:
Force network of a heap:
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Corresponding Pressure Distribution:
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Angle of the stresses:
No evidence for “fixed pricipal axes” proposed in [2]
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Effect of Hreap Histories r& Polydispersrity [3]:

a) Layered sequence b) Wedge sequence (ided) ) Wedge sequence (real): Avalanches

break the symmetry and
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— Heap by building the heap layer by layer = no pressure dip

— Monodisperse heaps = no pressure dip

— Polydisperse heaps = pressure dip if constructed in wedge
sequence, no pressure dip if constructed in layered sequence

— Consistent with experimental results on 3d-cones [6]
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Simulation Method [3]:
Integrator: Predictor-Corrector 5th order — large timestep,
high stability, dt = 0.1y/m/Y -«

Force Laws:

— Contact force: F. |, =Y - A/l. with inverse characteristic

1 _ L+l
length 7 = S

— Normal Damping force:

Fq 1 =

)

Y - %/Z7 for approach
max (Y . %/l, 7F67J_) for separation

— Tangential force/ friction:

Fd,|| (t) = Fd,H(t — At) +Y; v - At + N Mesr) - Yivg
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