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In order to understand the peculiar behavior of granular matter, it is
often elucidating to observe the physics of only a few grains. We present
two setups which fall into this class: The motion of a single particle in
a rotating drum, and the collective behavior of a few particles under the
influence of a swirling motion.

1. Rotation

1.1. INTRODUCTION

Friction is important in understanding the behavior of granular matter.
Motivated by discrepancies between numerical simulation [1] and experi-
ment [2], we have investigated the motion of a single sliding particle in a
rotating drum. A fascinating feature of this setup from the point of view
of the theorist is that small changes of the friction law lead to different
behaviors of the particle.

Figure 1. Experimental setup and theoretical simplification (left) of the drum

The experimental setup assures that particle movement is restricted a to
one-dimensional trajectory, hence the position can be described by ϕ(t). Let
the angular velocity of the drum be ω, its radius R. Since the friction force
Ffric is proportional to the normal force Fnorm, the differential equation for
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this problem takes the following form, if we assume the friction coefficient
to be a function of the relative velocity vrel = R · (ω − ϕ̇) = Rϕ̇rel(t):

Rϕ̈(t) = −g sinϕ(t) + µ(ϕ̇rel(t)) ·
{

g cosϕ(t) + Rϕ̇2(t)
}
. (1)

For constant µ (µ = µ0), this equation can be integrated once, which yields

ϕ̇2 = −2
g

R

1

1 + 4µ20
·
{

(2µ20 − 1) cosϕ− 3µ0 sinϕ
}

+ 2e2µ0ϕ · c. (2)

For appropriate values of c, this describes periodic motion. Therefor,
assuming that the presence of the perturbation will change the constant of
integration c into a slowly varying function of time: c = c0(τ)+εc1(t, τ)+· · ·
where τ = εt we are led in a natural way to the method of averaging [3, 4, 5].
Differentiating c once yields ċ = ε(c0τ (τ) + c1t(t, τ)) +O(ε2).

We can eliminate c1 via integrating over one period and using the time
derivative of equation (2), we obtain

εc0τ = − 2

Tp

∫ ϕmax

ϕmin
dϕ ϕ̇e−2µ0ϕϕ̇ · ε

[
(µ(ϕ̇)− µ0) ·

(
g

R
cosϕ+ ϕ̇2

)]
(3)

where Tp is the periodicity. Of course, Tp itself depends on c0 via equation
(2). If equation (3) happens to have a fixed point c∗0, there is a periodic
solution of the perturbed equation, the periodicity of which is given by
Tp(c

∗
0).

Figure 2. Different types of fixed points

Examining figure 2, we can see three different types of fixed points. In
case (a), we have a stable orbit, case (b) is unstable. In case (c), where
c0τ = 0 on a whole interval, we have a continuum of marginally stable
orbits.

1.2. FRICTION LAWS

1.2.1. Coulomb’s law
In this case, the friction coefficient depends only on the direction of the
velocity vector (Coulomb’s law).

µ(ϕ̇rel) =

{
µkin if ϕ̇rel ≥ 0
−µkin if ϕ̇rel < 0

.
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We observe two different kinds of trajectories: For small starting values
ϕ(0) and ϕ̇(0) = 0, the particle velocity will be small and ϕ̇rel is always
> 0. Hence, we have the unperturbed solution, the trajectory is marginally
stable and c0τ ≡ 0.

For larger values of ϕ(0) and ϕ̇(0) = 0, starting conditions lie outside the
periodic orbit and ϕ̇rel can become < 0. As a result, the particle dissipates
energy, the trajectories approach the periodic orbit.

Figure 3. (a) shows a phase plot ω = 1, µ = 0.4 R = 1 and ϕ(0) = 0.5, 0.7, 1.0, 1.2; (b)
shows c0τ as a function of c0[equation (3)] for Coulomb’s law. The parameters are the
same as in (a).

1.2.2. Friction law as suggested by Rabinowicz
E. Rabinowicz.[6] proposed a friction law which gives a velocity dependence
of µ ∝ v−0.1.

µ(ϕ̇rel) =

{
µkinϕ̇

−0.1
rel if ϕ̇rel ≥ ϕ̇0

−µkinϕ̇−0.1
rel if ϕ̇rel < −ϕ̇0

Figure 4. (a) shows a phase plot ω = 1, µ = 0.4 R = 1 and ϕ(0) = 0.5, 0.7, 1.0, 1.2 (b)
shows a typical plot for equation (3) if we have the friction law suggested by Rabinowicz.
The parameters are the same as in (a).

For ϕ(0) < ϕ(0)periodic (and ϕ̇(0) = 0), the particle gains energy and
approaches the periodic state. Then there is the periodic orbit itself and
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for ϕ(0) > ϕ(0)periodic, the trajectories approach the stable orbit due to

dissipation of energy. Details about yet another friction law are given in [5].

1.3. DISCUSSION

Comparing this behavior with experimental results,[2] we obtain good agree-
ment using Rabinowicz’s friction law.

Coulomb’s law with or without static friction [5] is not able to reproduce
the typical behavior of the experiment. The reason is that with Coulomb’s
law, the fixed point of (1), given by tan(ϕ) = µ0, is elliptic, hence struc-
turally unstable and destructible by arbitrarily small perturbations.

2. Reptation

Swirling a single layer of spheres in a horizontally oriented circular con-
tainer, we observe two different dynamical modes: For small numbers of
spheres the cluster follows the direction of the orbital motion whereas the
sense of rotation changes when the number of spheres N exceeds a critical
value [7]. The first mode is called rotation and the second reptation. In
addition to former findings we present experiments for the case where the
ratio of particle diameter d to diameter of the circular container D is small.
Recent numerical simulations suggest that in this case the rotation mode
is suppressed and only reptation occurs [8].

2.1. EXPERIMENTAL SETUP

To investigate the behavior of granular material under a swirling motion
we use an adjustable reciprocating orbital shaker (Thermolyne AROS 160)
as shown in [7]. Every point of the shaking table performs the same orbital
movement, there is no center of rotation. The driving frequency fd of the
shaker is fixed to 1.5 Hz. By a mechanical adjustment we can examine four
different driving amplitudes Ad of the orbital motion: 6.35, 9.53, 12.70,
and 15.88 mm. A Petri dish with an inner diameter of 176 mm is fixed on
the swirling table. As granular material we use glass marbles with a mean
diameter of 15.52 mm. The material density is given by 2.4 g/cm3. The
advantage of these marbles is that although they are of the same material
the inside contains spots of different colors. Thus the path of a single sphere
can be easily visualized while it is ensured that the colliding surfaces have
the same material properties.

We start with the closest possible packing density and measure the time
Ts a single sphere needs to circumnavigate the container. We focus on a
sphere which is close to the boundary of the Petri dish, i.e. a particle in
the outer ring of the cluster is used as a tracer to indicate the dynamics
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of the granular material. Ts is measured ten times and averaged. Next, one
particle is removed and after a waiting time of 3 min we again determine
the period of revolution.

2.2. EXPERIMENTAL RESULTS

The influence of the packing density p on the normalized frequency of ro-
tation fn for different driving amplitudes is seen in Fig. 5. fn is the ratio
of fs and fd, where fs = 1/Ts. As packing density we define a two dimen-
sional solid fraction: p = Nd2/D2. While the packing density is decreased
by steps of the amount of d2/D2 we study the response of the tracer sphere.
It is observed that at high packing densities the outer sphere does not exit
the outer layer of the cluster during one revolution of the cluster. But, at
a certain critical packing density this behavior changes because the mo-
bility of the sphere increases dramatically. Therefore it is likely that the
tracer particle travels to the second inner ring of the cluster. At this stage
it becomes questionable to follow the path of a single sphere in order to
obtain information of the global dynamics of the whole cluster. Thus, no
more measurements are performed below this critical packing density. Nev-
ertheless it is found that above this threshold only the reptation mode is
observed, which is expressed by a negative normalized frequency of rotation
because the rotation of the cluster is direct opposite to the swirling motion.

For small driving amplitudes (Ad = 6.35 and 9.53 mm) we obtain a
parabolic response behavior in Fig. 5. This means that as the packing den-
sity is decreased the angular velocity of our cluster first increases and then
decreases again. For Ad = 12.70 mm we observe that there is a deformation
in the parabolic shape. This behavior is even enhanced for the largest driv-
ing amplitude (Ad = 15.88 mm). In this case the data points are w-shaped.

2.3. DISCUSSION

The most interesting feature of Fig. 5 is the w-shaped behavior of the nor-
malized frequency of rotation for Ad = 15.88 mm. This means that in a
certain range the same rotational speed of the cluster is found for four
different numbers of spheres. To explain this we speculate that for a cer-
tain amplitude of driving fn is determined rather by the size of the cluster
than the packing density. Since we are in a regime where sheared granular
material expands its volume, which is known as Reynolds dilatancy [9], it
is likely that different numbers of spheres could result in the same cluster
size and thus give the same frequency of rotation. In our case it seems that
in a certain range of the packing density it makes no difference whether
the cluster is densely or loosely packed. We conclude that swirling granular
material could be used to determine the range where Reynolds dilatancy
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Figure 5. The frequency of rotation of a tracer sphere in the outer layer of the reptating
cluster is shown in dependence on the packing density. The frequency of rotation is given
in units of the driving frequency of the orbital shaker. The measurements represent runs
for four different driving amplitudes. The curves are obtained by polynomial fits of second
(Ad = 6.35 and 9.53 mm), fourth (Ad = 12.70 mm), and sixth order (Ad = 15.88 mm)
and should serve as a guide to the eye.

occurs: The limits are given by the packing densities of the two correspond-
ing local maxima in the frequency of rotation. To support this idea runs
with even larger container sizes and/or smaller particle sizes have to be
performed where local density measurements should uncover the different
packing configurations.
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