
SHARED MEMORY PARALLELIZATION FOR MOLECULAR

DYNAMICS SIMULATIONS OF NON-SPHERICAL GRANULAR

MATERIALS

A. SCHINNER, K.KASSNER

Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany

E-mail: alexander.schinner@physik.uni-magdeburg.de

klaus.kassner@physik.uni-magdeburg.de

1 Introduction

The problem of the characterization of granular matter is not only a problem of
material properties, but also a structural one. In this paper we use the molecu-
lar Dynamics to simulate interesting granular systems. Since simulations of this
kind are time consuming, massively parallel computers such as the CRAY T3E

are used. The domain to be simulated is divided into sub-domains, which are
distributed to the different processors. Information about the boundary region is
interchanged. In general, this is the bottleneck and slows down the program.

But there are alternatives. In our group multi-processor shared-memory ma-
chines, built by SUN, are available. Also multiprocessor Intel-based platforms using
LINUX are becoming more popular. The objective of the work presented here was
the implementation of a code which can be run on these cheap high-end shared
memory workstations. The appropriate method for parallelization on this kind of
machines is the use of THREADS.

For a more realistic simulation, we did not use spherical particles, but want to
represent the particles as polygons.

So the program we present in this paper is a multi-threaded molecular dynamics
simulation of 2-dimensional polygonal particles.

2 Programming with Threads

2.1 Shared Memory Architectures

Threads are a powerful tool for parallelization on appropriate computers, the are
designed for shared-memory machines. We want to focus on symmetric multi-
processor (SMP) architectures.a This architecture has some striking features. All
processors are physically sharing the same memory and have a single address space.
The processors do not communicate by sending messages across a network. They
exchange, or rather share information, by writing to and reading from memory.

Looking at figure 1 one can see a schematic drawing of the hardware. The first
problem to control is access to the memory, it is electrically nearly impossibleb to
allow simultaneous access to the same memory address. The next problem is the

aThis kind of architecture is typical for “low-end”systems. Other systems have NUMA (Non-
Uniform Memory Access), as used for example in the Cray T3E .
bExceptions may be dual-port RAM’s

proceedings˙long: submitted to World Scientific on June 2, 2011 1

Processor #1

Cache Cache Cache

Interconnection network

Memory

Processor #2 Processor #N

Figure 1. Schema of an SMP system

cache. Let us assume that a data is cached for processor # 1. Now processor #2
changes these data in the memory. Then the data in the cache of processors #1 has
to be declared invalid. Although this is not the programmers problem, it is good
to know these basic problems, since similar problems may arise while using threads
on the programming side.

2.2 Threads

A thread of control, or more simply a thread, is an independent sequence of execu-
tion of program code inside a UNIX process. All threads share the memory of the
same process. The threads within a process are scheduled and executed indepen-
dently in same same way as normal UNIX processes. On multiprocessors, different
threads may be executed on different processors.1,2

A program is a sequence of commands. To execute a program, we have a
small unit executing these string of commands in a given order. But why only one
executing unit? Imagine two units, working simultaneously on different parts of the
same program. Then these units are called threads. A program starts with the main
process. Then the programmer can create threads, which start to execute a given
function with given data. We want to explain this using the following example.

#include <errno.h>

#include <pthread.h>

#include <stdlib.h>

#define LENGTH 1024

/* Set value of every element */

void *worker(void *input){

int *ptr;

proceedings˙long: submitted to World Scientific on June 2, 2011 2

int i;

ptr=(int *)input; /* cast to appropriate type */

for (i=0;i<LENGTH;i++) ptr[i]=i;

return(NULL);

}

int main(int argc, char **argv){

/* Declare variables */

int data1[LENGTH],data2[LENGTH];

pthread_t thread;

pthread_attr_t thread1_attr;

/* necessary initializations */

pthread_attr_init(&thread1_attr);

pthread_attr_setscope(&thread1_attr,PTHREAD_SCOPE_SYSTEM);

/* serial execution */

worker(data1);

worker(data2);

/* parallel execution */

pthread_create(&thread,&thread1_attr,worker,data1);

worker(data2);

pthread_join(thread,NULL);

exit(1);

}

The function worker does the time consuming work by manipulating a vector of
integers. So, if this work has to be done for a different vector, we call worker as often
as necessary. In a serial program, this is sequentially. But obviously this work can be
done in parallel. By calling pthread create(&thread, &thread1 attr, worker,

data1) we ask the operating system to generate a thread which starts to work
with the function worker and the parameter data1. Immediately after creating
this thread, we can continue by calling worker directly with parameter data2.
Remember, while we do this, the other thread is still working with data1. At the
end we call pthread join(thread,NULL) to wait for the thread to be completed.
(Fig. 3)

Inside of a thread we can of course call other functions, allocate memory and so
on like in a normal C-program.

If the data we want to manipulate is independent for each thread this is all one
has to know about threads. However the simulation is more complicated if different
threads access the same data. For instance:
for (i=0;i<LENGTH;i++){

z=z+f(i);

}

Assume that we split the loop into two parts and each part is calculated by one
thread. Then the following sequence is possible:

proceedings˙long: submitted to World Scientific on June 2, 2011 3

step thread #1 thread #2
1 copy the value of z to cpu #1
2 calculate f copy the value of z to cpu #2
3 add local copy of z and f calculate f
4 copy local copy of z to memory add local copy of z and f
5 copy local copy of z to memory

The value calculated by thread #1 is lost! So this code will give unpredictable
errors, we have “race conditions”.

We have to protect shared resources, if we want to modify them. We need to
use a synchronization called mutual exclusion or mutex for short. If one thread
has exclusive access to data, no other thread can simultaneously access the same
data. The mutex variable is also be called a semaphore. In the former example one
can declare a mutex variable pthread mutex t mutex for y;, which controls the
access to variable z.

Then the body of the loop would look like this:
temp=f(i);

pthread_mutex_lock(&mutex_for_y);

y=y+temp;

pthread_mutex_unlock(&mutex_for_y);

Then the execution sequence could look like this:
step thread #1 thread #2
1 calculate f
2 lock mutex calculate f
3 get local copy of z wait for mutex
4 add temp and local copy of z wait for mutex
5 copy local copy of z to memory wait for mutex
6 unlock mutex wait for mutex
7 lock mutex
8 get local copy of z
9 add temp and local copy of z
10 copy local copy of z to memory
11 unlock mutex

Even though there are much more steps involved if the calculation of f is really
time consuming we obtain a good speedup.

In the case that both threads only read from the same variable and don’t want
to modify it, no semaphore is needed. This is only necessary if at least one thread
may change the variable’s value.

pthread create, pthread join pthread mutex lock and
pthread mutex unlock are all we need for writing a full featured parallel
program.

proceedings˙long: submitted to World Scientific on June 2, 2011 4

Predictor Predictor

Closest-Feature
Algorithm

X-Axes

Algorithm

Force
Calculation

Force
Calculation

Closest-Feature

Bounding-Box

Corrector Corrector

1 tim
e step

t

Semaphore

Semaphore

Thread #1

Y-Axes
Bounding-Box

Thread #2

Synchronization

Synchronization

Synchronization

Synchronization

Synchronization

Figure 2. Basic structure of the algorithm for two threads.

pthread_join

pthread_create

serial
Thread #2Thread #1

t

worker(&data1)

worker(&data2)

worker(&data2)

void *workervoid *worker(void *)

void *worker(void *)

void *worker(void *)

multithreaded

Figure 3. Parallel and serial version of the example.

3 Threads and Granular Matter

3.1 Basic Strategies

The most time-consuming part of a molecular dynamics simulation is the computa-
tion of the forces. As we calculate the force between two particles from the overlap,

proceedings˙long: submitted to World Scientific on June 2, 2011 5

we have to determine all collisions in our simulation.
To be able to efficiently simulate particles on a large scale we use a bounding

box-algorithm, which updates the list of colliding bounding-boxes in O(n). This
will dramatically reduce the number of possible collisions. In the next step we
calculate for each possible collision the distance between the surfaces of the particles
involved. Since we have an algorithm which can calculate this value within constant
time (independent of the complexity of the particles) we can generate the list of
collisions very fast

We have to calculate the area of overlap only if the overlap area is larger than
zero. This saves a lot of time, since calculating the overlap is time consuming,
especially if the overlap area is zero.

The most important thing for efficient programs is the organization of the data
structures. We have three fundamental structures. One structure is for the repre-
sentation of the particles. Here we have variables like position, velocity and shape.
These structures are organized in a linked list. The second structure is for the
bounding boxes. Here we have two linked lists, one for the x-axis, one for the y-
axis. The third type of structure represents a collision. This structure is for both
bounding box collision and particle collision. If we find an collision for particle i

and j (i < j) we keep the structure for this collision in a small linked list, appended
to the structure for particle i. So we can search for a collision much faster than in
a long global list.

The structure for the particles has a mutex. This enables us to protect either
the particle’s information itself or the appended list of collisions.

All algorithms are optimized for using information from the last time step. The
reason is that for molecular dynamic simulations the particles move a rather small
distance between two steps. Hence the information gained in the last step is not
very wrong and can be used as a good approximation for the current time step.
More information on the algorithms will be available3, Matuttis4 described the force
calculation in detail.

3.2 Bounding-Box Algorithm

The first step is the bounding-box algorithm. This part tries to reduce the number
of possible pairs of particles which have to be checked for collision.

We use an algorithm which is basically sorting the bounding box boundaries
along one coordinate axis. We have rules telling us how to manipulate the list of
collisions, depending on steps necessary for resorting. For the sake of simplicity,
we sub-divided the code into two threads, one for each axis. Since the information
on each collision can be changed by both threads, we have to use the particles
semaphores to guarantee the integrity of the data. However, most of the time, the
two threads do not have to wait. The result is an actual list of possible particle-

particle collisions.

3.3 Closest-Feature Algorithm

The closest-feature algorithm is a fast method for determining the distance of two
convex polygons. We take advantage of the fact that calculation time is generally

proceedings˙long: submitted to World Scientific on June 2, 2011 6

independent of the number of vertices of the polygons.
Since the lists of possible particle-particle collisions are appended to the list of

particles, we divide the list of particles into sublists for independent processing.
To calculate the distance, the threads have to read only from the structures of
both particles, which are not changed in this step. The information is written
to the structure of the collision, but it is guaranteed that no other thread reads
information from there. So we do not need any semaphore, the both threads are
completely independent.

When both threads are finished, we have the information about which particles
are colliding, stored in the structures of the collisions.

3.4 Force calculation

In the next step we have to determine the forces from each collision. Therefore we
calculate the overlap area for each particle pair, and will do further calculations for
which we need information stored in the structure for the collision.

Here again we split the list of all particles and each thread works on the according
collisions. All information needed for the calculation of the force is not changed
in this step, reading information does not require any mutex. But we have to sum
up the total force for each particle. Since it is possible that another thread is also
working on a collision the particle is involved in we have to protect the force with
the particle’s mutex. However, since this is unlikely we do not lose much time
having waiting threads.

3.5 Predictor-Corrector Differential Equation Solver

We use a Gear predictor-corrector method for solving the differential equation5.
The first step predicts position and velocity for the particles. Then one has to
calculate the forces and can correct position and velocity. Both predictor and
corrector only read and write information inside of a particle’s structure. So we
do not need to protect the data by semaphores. Hence we again split the list of
particles and let them be calculated by threads.

4 Simulations and results

Building a sandpile by pouring material from a point source is a very interesting
experiment because under certain conditions that below the apex of the sandpile
the ground pressure has a pronounced dip. This is a fascinating, although heavily
debated, behavior 6,7,8.

To explain this effect different continuum theories have been developed. How-
ever, these theories introduce additional assumptions for for the stress tensor. Since
it is nearly impossible to measure the stress inside a sandpile we have performed
simulations with our parallel code. We want to present one of these simulation runs
here.

We poured a mixture of small and big roundish particles onto a floor. Overall
there were 4500 particles with 7 corners each. Figure 4 shows a picture of the
pile. The different shading represent the time when the particles were dropped

proceedings˙long: submitted to World Scientific on June 2, 2011 7

onto the pile. The asymmetries are due to avalanches during the building process.
Calculating the pressure on the ground we find a dip (Fig. 8). Whereas these
results may be compared with experiments, we can also calculate quantities which
are not available to the experimentalist.

In figure 4 we see the force network inside the pile. On the bottom of the
pile we can see the endings of two main force paths left and right to the middle.
Having the forces it is simple to calculate the stresses inside the pile (Fig. 6).
Determining the angle of the main axes for different layers of the pile, we see
that the main axes are not parallel but are changing smoothly from the left to
the right side. Other interesting information such as isobars (lines of equal σzz)
may be calculated, too (Fig 9,10). Movies showing the simulation are available at
http://itp.nat.uni-magdeburg.de/∼schinner/granular/movies.shtml.

5 Conclusion

The speedup for programs on two processors is about 1.9 to 1.95 depending on the
numbers of particles. These values have been measured under working conditions,
the computer doing this simulation was also working as file server.

We have presented our parallel versions of algorithms for the simulation of granu-
lar materials. There is no need to interchange any information between the threads.
The program has been designed for offering optimal conditions for shared memory
parallelization.

We would like to thank Hans-Georg Matuttis for fruitful discussion. We are
indebted to the organizers of this workshop who provided us with the possibility
for a more elaborate description of our work.

References

1. S. Kleinman, D. Shah, and B. Smaalders. Programming with Threads. SunSoft
Press A Prentice Hall Title, 1996.

2. B. Nichols, D. Buttla, and J. P. Farrell. Pthreads Programming. O’Reilly &
Associates, Inc., 1997.

3. Alexander Schinner. Fast algorithms for the simulation of polygonal particles.
submitted to Granular Matter.

4. H.-G. Matuttis. Simulations of the pressure distribution under a two dimen-
sional sand-pile of polygonal particles. Granular Matter, 1(2):83–91, 1998.

5. M. P. Allen and D. J. Tildesley. Computer Simulation of Liquids. Oxford
University Press, 1987

6. Tomosada Jotaki and Ryuichi Moriyama. On the bottom pressure distribution
of the bulk materials piled with the angle of repose. J. of the Soc. of Powder

Technol., Japan, 16(4):184–191, 1979. in japanese.
7. J. Šmid and J. Novosad. Pressure distribution under heaped bulk solids. I.

Chem. E. Symposium Series, 63:D3/V/1–12, 1981.
8. J. Šmid. Druckverteilung unter einem Schüttguthaufen. Grundlagen der

Landtechnik, 33(3):72–75, 1983.

proceedings˙long: submitted to World Scientific on June 2, 2011 8

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−0.2

0

0.2

0.4

0.6

0.8

Figure 4. Picture of the pile, build from the point source. The shading represent the time the
particles have been dropped in.

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−0.2

0

0.2

0.4

0.6

0.8

Figure 5. Picture of the force-net inside of the pile. Stronger forces are brighter and have wider
lines.

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−0.2

0

0.2

0.4

0.6

0.8

Figure 6. Main axis of the stress tensor inside the pile.

−2 0 2
0

0.5

1

1.5

2

2.5

3

Ψ

Layer1

−2 0 2
0

0.5

1

1.5

2

2.5

3

Ψ

Layer2

−2 0 2
0

0.5

1

1.5

2

2.5

3

Ψ

Layer3

−2 0 2
0

0.5

1

1.5

2

2.5

3

Ψ

Layer4

−2 0 2
0

0.5

1

1.5

2

2.5

3

Ψ

Layer5

−2 0 2
0

0.5

1

1.5

2

2.5

3

Ψ

Layer6

Figure 7. Angle of the stress tensors’ main axis for different layers.

proceedings˙long: submitted to World Scientific on June 2, 2011 9

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

r

P
re

ss
ur

e

Figure 8. Pressure onto the ground. One can see the Minimum of the pressure beneath the center
of the pile.

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−0.2

0

0.2

0.4

0.6

0.8

Figure 9. Isobaric lines inside the pile. Red areas have low pressure, blue areas are areas of high
pressure (≈ 106N/m).

 0.0048011

 0.0096022

 0.014403

 0.019204

30

210

60

240

90

270

120

300

150

330

180 0

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

x 10
−4

0

50

100

150

200

250

300

350

1/(m2)

Figure 10. The left side shows a polar plot distribution of the angles of all forces. The right side
is the histogram for particles area, one can see, that we used a bidispers mixture.

proceedings˙long: submitted to World Scientific on June 2, 2011 10

