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We investigate numerically the micro and macro mechanical behaviour of non-cohesive granular materials,

especially in the static limit. To achieve this goal we performed numerical simulations generating two-

dimensional “sand piles” from several thousands of convex polygonal particles with varying shapes, sizes

and corner numbers, using a discrete element approach based on soft particles. We emphasize that the

displacement (strain) fields inside sand piles have not been measured in experiments on sand piles.

Averaging is made reproducible by introducing a representative volume element (RVE), the size of which we

determine by careful measurements. Stress tensors are studied for both symmetric and asymmetric sand

piles in two-dimensional systems, where the particles are dropped from a point source. Furthermore, we

determine the fabric tensor inside the sand piles. A surprising finding is the behaviour of the contact density

in this kind of heap, which increases where the pressure is at a minimum. The fabric is linearly proportional

to the product of the volume fraction and the mean coordination number for a pile consisting of mono-

disperse mixture of particles. We observe that the macroscopic stress, strain and fabric tensors are not

collinear in the sand piles.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Granular materials are of fundamental importance and high

interest to various branches of science and technology such as

physics, applied mathematics and mechanics. In recent years,

considerable interest in granular materials has been stimulated due

to their high technological relevance: many products exist as a

granulate at some stage of their processing history. Currently, a large

amount of money is spent on the transportation and processing

associated with the storage and containment of granular materials.

However, about 50% of the money is unnecessarily spent because of

problems related to the transport of the material from one part of the

factory to another part of the factory.

Now, to have a look from another angle, it is often assumed that

the side wall of a material container receives a constant force from the

granular material inside. The common example of this issue is a model

of a silo which is of great concern to various industries such as

agricultural, pharmaceutical and mining industries, and all construc-

tion-based industries. However, this assumption is wrong, and in the

general case, forces are non-uniformly propagated within the

material, so they are also non-uniformly distributed at the wall of

the silo. In some cases, if the force is much larger in some parts of the

container than in other parts, the silo might collapse. For in order to

avoid problems such as the collapse or breach of a silo, one can simply

increase the thickness of the walls by a generously chosen safety

margin, which would be unnecessary if we had the knowledge how to

design the silo in a proper way, especially taking into account the

expected distribution of forces inside the silo. Therefore, the

understanding of the basic physical principles behind the stress

distribution in static granular materials is clearly important.

A simple example out of a collection of granular arrangements is

the static sand pile. The formation of a sand pile is related to the

fundamental behaviour of granular materials, including particle

packing, segregation and pressure distribution [1–8]. The practice of

storing granular materials in the form of sand piles occurs in many

industrial situations dealing with particulate materials. Examples

include the pharmaceutical industry relying on the processing of

powders and tablets, the agricultural industry, coal industry and the

food processing industries where seeds, coal (grain) and foods are

transported andmanipulated. Moreover, the storing of the material in

a pile may be useful in fertilizer and mining industries. Thus, the flow

of granular materials through a funnel (to form a pile) is an important

problem for many industrial processes.

In order to handle the processing of granular materials in a pile

properly, it is important to understand itsmechanical properties. On the

other hand, the study of deformation of granular materials either under

external loading or unloading is also of practical importance for many

industries. Although some progress has been made in this field during

last ten years, these properties are still far from being exhaustively

understood. Moreover, continuum models proposing constitutive
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relations to describe the flow and the deformation of granularmaterials

have remained important, these constitutive relations are not able to

completely describe the behaviour of granular materials.

This paper is organised as follows. In Section 2, we explain in

briefly about the simulationmethod and howwe construct a sand pile

from a point source procedure. Section 3 constitutes the definitions

and mathematical formulations of the macroscopic stress and fabric

tensors as well as for the strain tensor, later using a best-fit approach.

In Section 4, the introduction of representative volume elements

(RVEs) used in the calculation of macroscopic continuum quantities is

presented for the sand pile case. The results for various averaged

macroscopic tensorial quantities obtained from discrete element

method simulation for two-dimensional sand piles of soft convex

polygonal particles are discussed in Section 5.

2. Simulation method

We simulate sand piles by building them from about of 6500

convex polygonal particles with varying shapes, sizes and edge

numbers. The particles were poured from a funnel with a small outlet,

known as “point source” procedure. When a pile is constructed from a

point source, the particles are dropped always onto the apex of the

sand pile and roll down the slopes of the pile. The number of polygon

edges varies from six to eight for each simulation. The particles were

inscribed into ellipses with uniformly distributed axes and were

dropped onto the system from 0.5m height with initial velocity of

0.2m /s.The degree of poly-dispersity of the particles was about 30%

and average size of the particles was 6.8 mm for both the major and

minor axes of the ellipse. We used a static friction coefficient of

μ=0.54 for the particles. The dynamic friction coefficient was same as

that of the static friction coefficient. The density and Young's modulus

of the particle were 5000kg /m2 and 107N /m, respectively. The time

step for simulating the sand piles was 2×10−6s and damping

coefficient was used as γ=0.75. The angle of repose obtained by

taking the average over the left and right base angles of the sand piles,

as it was about 28°.

A snapshot of oneof the simulated sandpiles constructed fromapoint

source is illustrated in Fig. 1. The different shading corresponds to

particles dropped at different times. We used a flat bottom ground plate.

Thewalls and the funnel aremade of immobile specially shaped particles

and the bottom ground plate is fixed in shape as well. The characteristic

properties of the ground plate, side walls and funnel are equal to the

particles properties, whichmean the Young'smodulus of elasticity of the

bottom groundwall is the same as for the particles, and the static friction

coefficient between the bottomgroundwall and the particles is the same

as between the particles. In this work, we used a two-dimensional

discrete elementmethod (DEM) to compute the trajectory and rotational

motion of each particle. DEM is a modeling technique for analyzing

complex systemsof individual particles and is used to simulate efficiently

bothquasi-static anddynamical behaviour of a largegranular assembly. It

has become a powerful numerical approach for analyzing non-

homogeneous and discontinuous materials. It was originally proposed

by Cundall et al. [9] for granular materials, especially in particle flow

simulation. Amongst various modeling techniques, DEM is the most

realistic one for dynamical situations, because it explicitly takes into

account the forces involved in the formation of assemblies of grains and

in our case, also a realistic geometry of the particles.

DEMinvolvesamoleculardynamics simulationwithcomplexparticles

and force laws, including dissipation. The main difference between the

discrete elementmethodandprecedingmolecular dynamicsmethods lies

in the particle interaction laws. Molecular dynamics simulations of atoms

andmolecules involve interactionswith force laws thatmaybe long range

on the atomic scale, discrete element simulations involves inelastic

interactions between particles and short range force laws, unless

electrostatic forces are taken into accounts. In DEM approaches, the

equations of motion describing the trajectories of particles are integrated

numerically using a step by step integration procedure, oftenwith a fixed

time step. The basic structure of the DEMalgorithm consists of a loop that

contains the three steps:

▪ collision detection (at time t),

▪ force computation (at time t),

▪ solution of the equations of motion (integration process) (inte-

grating up to time t+Δt).

We solve the equations of motion Eq. (1) for the forces acting on

each particle and for the torques, using a fifth-order Gear predictor-

corrector method [10], usually with a fixed time step.

mir
::

= Fi + ∑
n ið Þ

j=1
Fij

Iiϕ
::
i = Li + ∑

n ið Þ

j=1
Lij:

ð1Þ

Here, the subscript i runs over all the particles, n(i) is the number of

contact points of theparticle i, and the subscript j runsover all the contacts

of the particle iwith other particles. Fi is the force acting on each particle i

due to external fields, in our case this is only gravitation. Fij is the sum of

the normal contact force and tangential contact force as well as the

dissipative force produced by the particle touching particle iin contact j.

In this study, we use soft but shape-invariant particles: two particles

in contact with each other are allowed to interpenetrate partially. The

normal forces are calculated from the overlap area and contact length

defined as the distance between the two points of intersection of two

overlapping particles, (defined in the appendix), whereas, the tangential

force is calculated using a Coulomb type friction coefficient between

particles. The dissipative normal force is calculated from the velocity

during the time of overlap of particles using a phenomenological

damping constant. The detailed descriptions of normal and tangential

forces are given in [11].

3. Determining macroscopic quantities

In this section, we derive the mathematical formulas for various

macroscopic tensorial field quantities including stress, strain, and

fabric for sand piles consisting of polygonal particles. First we

Fig. 1. Snapshot for a simulated sand pile constructed from a point source with 30% poly-disperse mixture of particles.
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determine the formula of those tensorial quantities for a single

particle and we then average over many particles by introducing a

representative volume element (RVE).

3.1. Calculation of stress fields

In order to describe the behaviour of granular materials under

external loading one has to determinemacroscopic state variables like

the stress through a proper averaging of microscopic variables. For the

stress tensor, the microscopic variables are the forces acting between

the particles and the lines connecting the centres of particles with

their contact points, the so-called branch vectors. Once we have the

forces and their points of contact, it is easy to derive a formula for the

average stress obtained in a homogeneous polygonal particle

assuming that the forces given in the contact points act on the

corresponding edge of the polygon.

We derive the stress tensor in the following way: for a body in

static equilibrium, the stress components at every point should satisfy

the differential equation

∂σxx

∂x +
∂σxy

∂y + Fx = 0;

∂σyx

∂x +
∂σyy

∂y + Fy = 0;

ð2Þ

where Fx and Fy are the x and y components of the body forces per unit

volume applied to the body. In the case of Fx=0 and Fy=gi
(gravitation), the stress equilibrium Eq. (2) become

∂σxx

∂x +
∂σxy

∂y = 0;

∂σxy

∂x +
∂σyy

∂y = −gi:

ð3Þ

The above expression (3) can be written in the form of

∂σil

∂xl
= gi; i = x; y gx = 0; gy = −g

h i

ð4Þ

with an implied summation over subscript l (Einstein summation

convention).

For the computation of the average stress tensor, we multiply both

sides of the Eq. (4) by the coordinate xj and integrate over the

“volume” Vpof the particle p.

∫
Vp

xj
∂σil

∂xl
dV

p
= ∫

Vp

xjgidV
p
; ð5Þ

The left hand side of Eq. (5) can be recast as follows:

∫
Vp

xj
∂σil

∂xl
dV

p
= ∫

Vp

∂ σilxj

� �

∂xl
dV

p− ∫
Vp

σil

∂xj
∂xl

dV
p

= ∫
Vp

∂ σilxj

� �

∂xl
dV

p− ∫
Vp

σilδjldV
p

∫
Vp

xj
∂σil

∂xl
dV

p
= ∫

Vp

∂ σilxj

� �

∂xl
dV

p− ∫
Vp

σijdV
p
:

ð6Þ

The right hand side of Eq. (5) is

∫xjgdV
p
= gi∫xjdV

p
= 0: ð7Þ

(since ∫xjdV
p=0, as xj is measured from the centre of mass).

Inserting Eqs. (6) and (7) in Eq. (5) yields

∫
Vp

∂ σilxj

� �

∂xl
dV

p− ∫
Vp

σijdV
p
= 0

⇒∫
∂ σilxj

� �

∂xl
dV

p−V
p

〈σ
p
ij〉= 0

⇒〈σ
p
ij〉 =

1

Vp ∫
Vp

∂ σilxj

� �

∂xl
dV

p
:

ð8Þ

By applying the divergence theorem to Eq. (8), the volume integral

can be transformed into a surface integral. This gives

〈σ
p
ij〉=

1

Vp ∫
Sp

xjσilnldS
p
: ð9Þ

σilnl=Fi is the traction along the surface element dSp, a force per area,

in 2D per length.

If the surface force on edge C is considered constant along the edge,

we have σilnlΔS
C=Fi

c for that edge.

Hence the right hand side of the Eq. (9) can be written as the sum

over all contact forces.

〈σ
p
ij〉=

1

Vp ∑
cp

c=1
x
c
j F

c
i : ð10Þ

Since in the void space of the averaging volume element there is no

stress, we just need to determine the average stress tensor over all

particles whose centre of mass lies inside the averaging volume

element V

〈σij〉=
1

V
∑
n

p=1
V
p

〈σ
p
ij〉: ð11Þ

Inserting Eq. (10) in Eq. (11) we obtain a double sum given by the

expression:

〈σij〉=
1

V
∑
n

p=1
∑
cp

c=1
x
c
j F

c
i : ð12Þ

Eq. (12) allows us to determine the averaged stress tensor over

many polygonal particles in an averaging volume element V. We can

now define the stress tensor (from Eq. (12)) as the dyadic product of

the contact force F c acting at the point c with the corresponding

branch vector xc, as schematically shown in Fig. 2.

3.2. Calculation of strain fields

To a certain extent, even more interesting than to study the stress

tensor is to determine the strain distribution under a sand pile. Since

our study is concerned with the sand pile model, first we have to

deform (relax) the sand pile in the proper way in order to obtain

realistic results for the strain tensor within the sand pile. One might

regard it as one of the essential questions in the field of granular

heaps, how deformation under stress can be defined, aiming at the

identification of a strain tensor. As of now, no strains have been

measured in experiments on sand piles, and continuum models

assume that for sand piles displacement fields are not available.

Therefore, several closure relations proposed for the equations

describing sand piles have been obtained without making use of the

strain tensor [1–3].

To obtain a measure for strain numerically, the sand pile is allowed

to relax under reduction of gravity. We reduce gravity for a pile slowly

by about 10% from the actual state (ambient gravity level) of the pile

at g=9.81, this will lead us to obtain strains by determining the
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position changes at the particle centres when gravity was changed

from one level to the other and by using these as displacement vectors

for the calculation of a Cambou's best fit strain.

3.2.1. Cambou's best-fit strain

In order to determine the strain fields inside the sand piles, we use

one of the simplest techniques, namely the best-fit strain of Cambou

et al. [12] who consider the relative translation of the particles. Let us

assume that two grains p and q have a contact c and duj
p denote the

translation of the centre of particle p. The relative translation of the

pairs of grains p and q forming contact c is

dΔu
c
j = du

q
j −du

p
j : ð13Þ

The vectors ri
pc and ri

qc connect the corresponding particle centres to

the contact point c, as illustrated in Fig. 3 and arewhat we called branch

vectors so far. According toCambouet al. the branchvector assigned to a

contact is defined as li
c=ri

pc−ri
qc, i.e., it is simply the difference of the

centre-of-mass vectors of the two particles sharing the contact c.

According to Cambou et al., the solution of best-fit translation

gradient tensor εij is

εij = zik ∑
c
dΔu

c
j l
c
k ð14Þ

i, j,k=x,y summation over k implied). Where zij denotes the inverse of

matrix

∑
n

c=1
lcxl

c
x ∑

n

c=1
lcyl

c
x

∑
n

c=1
lcxl

c
y ∑

n

c=1
lcyl

c
y

0

B

B

B

@

1

C

C

C

A

=
zxx zxy
zyx zyy

� �

for two-dimensional systems.

The components of the strain tensor in two-dimensions are as

follows

εxx x; yð Þ = ∑
c

dΔuc
x zxxl

c
x + zxyl

c
y

� �

εyy x; yð Þ = ∑
c

dΔuc
y zyxl

c
x + zyyl

c
y

� �

εyx x; yð Þ = ∑
c

dΔuc
x zyxl

c
x + zyyl

c
y

� �

3.3. Fabric tensor

A particular quantity that describes the internal texture of the

granular assembly is known as the fabric tensor. Several definitions

are available to define the fabric tensor inside an assembly of grains,

see in Refs. [13–20]. Using the contact points of the individual

particles, we can calculate the fabric tensor for single particle. Then it

is easy to derive the formula for the average fabric tensor over

sufficiently many particles in an averaging volume element.

3.3.1. The fabric tensor for one particle

The formula for the fabric tensor of particle p is given [13,14] by

F
p
ij = ∑

c
n
c
i n

c
j ; ð15Þ

where ni
c is the ith component of the unit vector to contact point c of

the considered particle p, as shown in Fig. 4.

nc
x =

xc−xp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xc−xp

� �2
+ yc−yp

� �2
r ;

nc
y =

yc−yp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xc−xp

� �2
+ yc−yp

� �2
r ;

ð16Þ

where (xc,yc) and (xp,yp) are the contact point and the centre of mass,

respectively, and the sum in Eq. (15) is over all the contacts of the particle

p. The trace of the fabric tensor then determines the number of contacts of

particle p

tr F
p
ij

� �

= ∑
c
n
c
i n

c
i = C

p
: ð17Þ

3.3.2. The fabric tensor for many particles

We take an average over many particles in a averaging volume

element V to determine the average fabric tensor. The averaged fabric

tensor over many particles is given by

〈Fij〉V =
1

V
∑
p
V
P
F
P
ij ; ð18Þ

where V is the volume of the averaging element that contains the

particles whose centre of mass lies inside it and Vp and Fij
p respectively

denote the volume and the fabric tensor of particle p.

3.3.3. Coordination number

The average coordination number C, in our definition, corresponds

to the mean number of contacts per particle within a volume element

V, is given by

C =
1

N
∑
p∈V

n
p
; ð19Þ

where np denote the number of contacts of the particle p and N is

number of particles that lie within the averaging volume element

V whose centres of mass lie inside it.

4. Averaging procedure

One can obtain detailed information about measurable quantities

such as forces, stresses, and displacements of an individual particle from

the discrete element simulation. However, the behaviour of an

individual particle is not significant for the behaviour of the whole

system, as most of the measurable microscopic quantities in granular

material vary strongly as a function of position.
Fig. 2. Schematic plot of a particle pwith branch vector xc and the position vector rp: The

branch vector xc points from the centre of mass of the particle p to contact point c.
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In this regard, one common example is the stress tensor, which is

not constant across grains (microscopic level), but usually it shows its

largest values for particles with a large number of contacts. Moreover,

the microscopic stress tensor would not be a convenient means to

describe the macroscopic sand pile, as it fluctuates widely within a

volume containing a few sand grains. In fact, it is zero in the voids

between grains. Hence for a continuum description, we need to

average microscopic quantities over suitable domains, which will

reduce the relative fluctuations. In order to suppress the fluctuations,

we need to perform averages over sufficiently many particles in an

averaging volume element. But, the question is how many particles

are actually required to determine the average macroscopic tensorial

quantities, which means, one has to determine the number of

particles (or appropriate size of the volume element) providing

realistic results for the macroscopic quantities including fabric, strain,

stress and volume fraction of the sand pile.

In our work, averages are performed by introducing a represen-

tative volume element (RVE) via the requirement that the average

becomes size independent, if the volume is taken equal to this value or

larger. Averaging over different volumes gives different results, as

long as the volume element is too small. As we increase the size of the

volume element in the computation of the average, the averaged

quantity converges to a certain value. A size of the volume element

near but above the minimum needed for convergence gives the

representative volume element to be used in evaluations of

macroscopic fields.

We have taken into account those particles whose centres of mass lie

inside the averaging volume element to determine the macroscopic

quantities. Sometimes, this method is referred to as the particle centre

averaging technique.

The simulation results for the individual components of the strain

tensor against the number of particles are displayed in Fig. 5. The

number of particles shown in the graph corresponds to the size of the

volume element. It can be seen in the figure that all the components of

the strain tensor are converged approximately at the same number of

particles. We find that a size of the volume element containing 100–

200 particles is sufficient to serve as RVE.

On the other hand, we determine the size of the RVE for the fabric

tensor as illustrated in Fig. 6. We find from the figure that the size of

the volume element is the same as for the strain tensor. It should be

noted that the size of the volume element that we consider for the

calculation of the fabric and strains is same as for the stress and

volume fraction of the sand pile.

5. Simulation results

The simulation result of averaged density (volume fraction) at

different heights inside a symmetric sand pile created from a point

source is represented in Fig. 7. The figure demonstrates the density

changes with relative heights inside a sand pile and the middle region

of the pile shows a higher density than the rest of the sand pile. The

middle region has a density that is approximately 8–10% higher than

the density in the vicinity of the free surface of the sand pile.

Next we determine in the following some properties of the fabric

tensor inside a sand pile. The simulation result of the trace of the

averaged fabric tensor, describing the average contact density of the

sandpile, derivedby taking the sumof themajor andminor eigenvalues

of the fabric tensor, at different heights of the piles is illustrated in

Fig. 8A. The figure demonstrates that the mean number of contacts

increases towards the centre and towards the bottom layer and

decreases towards the surface and towards the top layer of the pile.

We observe that the number of contacts of the particle is higher where

the density is maximum. We then determine the deviatoric fraction of

the fabric, defining the degree of anisotropy in the contact network of

the sand pile, as simulation results shown in Fig. 8B. It can be seen in the

figure that the deviatoric fraction decreases towards the centre and

increases towards the free surface of the pile that lead to conclude that

the fabric ismuchmore isotropic in the central core region of a sand pile

than in the outer part. The angle of the orientation of the major

eigenvector of fabric tensorwith respect to the horizontal axis is given in

Fig. 8C at different heights inside the sand pile. We find that the

orientation of the fabric changes from −40∘ (left) to +40∘ (right).

The averaged stress tensor was evaluated throughout the sand pile;

typically, we represent it via a plot of stress tensor components as a

function of the lateral coordinate x of the pile for layers of given heights

y1, y2, ... yn. The stress tensor is normalized by the hydrostatic static

pressure, ρgh, where the quantities ρ and h denote the density and the

height of the sand pile, respectively, and g is the acceleration due to

gravity. In order to suppress thefluctuations of the result of stress tensor

for single sand pile, we have taken average over 14 sand piles. The

averaged vertical normal stress tensor (pressure) obtained from DEM

simulation is displayed in Fig. 9A.Wefind that the vertical normal stress

distribution changeswith the vertical position in the sandpile.Wefinda

pressure dip below the apex of the sand pile which appears not only at

the bottom layer of the sand piles but also exists up to a certain height

inside sand piles (but not above). It is a somewhat surprising result that

for a sand pile constructed from a point source the density is maximum

at the centre where the pressure is actually minimum. An increase of

density with decreasing pressure is a signature of instability. A

qualitative explanation of the pressure minimum would be a local

collapse of the grain arrangement in the interior, leading to increased

density and an ‘arch’ of particles above the collapsed part supporting the

weight of the column of grains below the pile tip.

The simulation result of anisotropy stress is illustrated in Fig. 9B. At

the centre it is about 0.2, at theflanks it is 0.45 and closer to the surface it

increases to 0.6 (approximately).The orientation of the major eigen-

vector of stress tensor is given in Fig. 9C at different heights inside the

pile. It changes from −30∘ (left) to +30∘ (right). Moreover, there is a

well known macroscopic approach named “Fixed principal axes” (FPA)

model [3] based on an analytic description for describing the stress

distribution under a sand pile. The closure relation of the FPAmodel can

be derived more intuitively by assuming that the principal axes of the

stress tensor take the fixed directions ±ψ on both sides of the central

axis of the sand pile, where ψ = π−2ϕð Þ= 4, hence the name of the

model is FPA.ϕ is the angle of repose of the sand pile. Moreover, the FPA

model leads to a pronounced dip in the pressure distribution under the

tip of the sandpile, asweobserved qualitatively similar behaviour in the

pressure profile obtained from our simulation illustrated in Fig. 9A.

However, the conclusion of FPA model does not correspond well to our

simulations — the orientation of the stress tensor is not constant

throughout the sand pile, as one can see in Fig. 9C.

We have represented and discussed above numerical results

concerning the stress distribution inside the symmetric sand piles. Up

to now, no stresses have been measured for asymmetric sand piles

either experimentally or numerically. However, there exists in the

Fig. 3. Schematic diagram of Cambou's branch vector lc assigned to the contact c of two

particles. Note that according to our preceding nomenclature rpcand rqc are the branch

vectors.
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literature an elasto-plastic continuummodel set up by Didwania et al.

[2] predicting an analytical solution for the stress distribution inside

an asymmetric sand pile.

In order to determine stresses under an asymmetric sand pile we

have performed discrete element method simulation of two-dimen-

sional asymmetric sand piles. We simulate asymmetric sand piles by

constructing them from about of 3900 polygonal particles that are

poured from a point source. One of the simulated sand piles is shown

in Fig. 10.We used a poly-dispersemixture of round of particles with a

degree of poly-dispersity of about 25%. The procedure for constructing

an asymmetric sand pile from a point source is essentially the same as

that of the construction of a symmetric sand pile, but instead of using

a fixed height point source (the funnel), we move the funnel slowly

horizontally towards the right hand side. The average angle of repose

for the left-hand side of the sand pile obtained for seven sand piles

was 28∘ and it was 21∘ for the right-hand side of the sand pile. Fig. 11

reveals the simulation results for the averaged normalized vertical

normal stress tensor along horizontal cuts at different heights of an

asymmetric sand pile. In the figure, circles symbols connected by line

represents the results at the bottom layer of the corresponding sand

pile, where as the stars symbols corresponds to the top layer. We find

that there is an asymmetric pressure distribution below the apex of

the pile, and a dip exists in the stress profile. We note that the

behaviour obtained using the DEM simulation is same as that of the

theoretical prediction obtained by Didwania et al, see in Ref. [2].

Next, we focus on the sensitivity of the strain distribution (total

strain) to the preparation of sand piles. Before interpreting the results

for the strain tensor, first, we present simulation results for the

movement of each individual grain inside the sand pile under gravity

reduction. The result obtained from the simulation is represented in

Fig. 12. Each arrow shown in the figure corresponds to themovement of

an individual particle. The arrow is drawn from the initial position of the

centre of mass xi; yið Þ of the particle i at the ambient gravity level of a

sand pile at g=9.81m/s2 towards the final point of the centre of mass

x′i; y
′

i

� �

at the new state of the sand pile obtained by reducing gravity

slowly by about 10%. As expected, the range of movement of a particle

decreases towards the bottom layers of the sand pile, and increases

towards the surface and the tip of the sand pile.

The averaged vertical normal strain tensor component uyy

obtained from DEM simulations is displayed in Fig. 13. The topmost

curve in the graph shows the strain tensor result at the bottom layer of

the corresponding sand pile, whereas the bottom curve corresponds

to the top layer. Heights are given as function of the total height of the

pile to its apex. An interesting feature of the vertical normal strain

tensor for various heights is that the vertical normal strain changes

with the layer position in the sand piles like the stress tensor. The

averaged vertical normal strain shows a dip near the centre of the

piles. It can be seen that the strain dip appears not only at the bottom

layer but also exists up to the certain height inside the sand pile. The

orientation of the strain tensor with respect to the horizontal axis is

given in Fig. 14. It changes from −45∘ (left) to 45∘ (right).

Moreover, the orientation of three macroscopic tensors stress,

strain and fabric are plotted in Fig. 15 only for the first two bottom

layers of the pile. It can be seen, however, that the orientations are

different for three tensors, which means that these macroscopic

tensors are not collinear. Most likely this limits the utility of a

description of granular piles in terms of isotropic elasticity.

In the next step, we determine the correlation between trace of the

fabric tensor and product of the volume fraction υ and the mean

coordination number C. We plot the product of the volume fraction and

mean coordination number of a sandpile as a function of the trace of the

fabric tensor in Fig. 16. The top panel of the figure shows the result for a

mono-disperse arrangement of particles, whereas the bottom panel

shows the same for a poly-disperse mixture of the particles. In the first

case, all the data points collapse on a single straight line, which means

that the averaged fabric tensor is linearly proportional to the product of

the volume fraction and mean coordination number. Moreover, the

proportionality constant is one, i.e.,

tr 〈F〉
� �

≅υC: ð20Þ

This is to be expected from the definition of the fabric tensor.

Remember that for a single particle tr Fð Þ = cp (Eq. 17).

On the other hand, for a poly-disperse systems the trace of the

averaged fabric tensor is not linearly proportional to the product of

the volume fraction and mean coordination number: i.e.

tr 〈F〉
� �

≠υC: ð21Þ

This is not unexpected either, because for poly-disperse particles

the local volume fraction differ and we have υC≠〈υcp〉; meaning that

volume fraction and contact number are not statistically independent.

For poly-disperse granular materials, Madadi et al. [21] introduced a

dimensionless (scalar) factor, the so-called “correction factor” which

is only dependent on the particle size probability distribution function

in order to predict a macroscopic material property based on a

microscopic property of the granular materials. According to Madadi

et al, the trace of the fabric tensor can be factorised into three

contributions: (1) the volume fraction of the granular assemblies (2)

themean coordination number (3) a correction factorg2. We canwrite

the trace of the averaged fabric tensor for a poly-disperse granular

system as in a mathematical expression:

tr 〈F〉
� �

≅υcg2: ð22Þ

We have determined the correction factor g2 simply from our DEM

numerical simulation results by taking the ratio between tr 〈F〉
� �

and

υc, i.e.

g2 =
tr 〈F〉
� �

υc
: ð23Þ

From the above Eq. (23), we find the correction factor g2=1.045

for a sand pile consisting of poly-dispersity mixture of the particles

with a degree of poly-dispersity of 30%.

We then plot in Fig. 17, the trace of the fabric tensor against the

volume fraction of a sand pile. The behaviour is roughly linear, meaning

that the contact numberdensity is proportional to thevolume fractionof

the sand pile. In conclusion, we have a lower pressure in the central

Fig. 4. Schematic plot of a polygonal particlepwith five contact points. The branch vector

rpc and the unit vector ncare shown at contact point c=2.
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region of the sand pile than in the region around, the density is locally

maximum and the contact-number-density shows same behaviour.

6. Conclusions

As a first step of this work, severalmicroscopic quantities including

forces, contact points, contact displacement, and displacement of the

particle centres of sand pile were evaluated, with the aim to

determine from them averaged macroscopic variables, viz. stress,

strain, density, and fabric. To obtain macroscopic quantities from

microscopic ones averaging was performed on “representative

volume elements” (RVEs) in computing the macroscopic variables

for a continuum description. A sufficient size for an RVE to yield

converged results was determined to contain 100–200 particles.

The pressure distribution was evaluated both for symmetric and

asymmetric sand pile created by pouring materials from a point source.

We find, not unexpectedly, that the pressure is not onlyminimumat the

bottom layer, but also in higher layers of the pile. However, it disappears

in layers near the tip of the sand pile. The density profile of sand piles

was alsomeasured; we observe that themiddle region of the sand piles

constructed from a point source displays higher density than the rest. In

conclusion, the averaged density is maximum in the centre of the piles

where the pressure isminimum. Furthermore, we found an asymmetric

pressure distribution inside the asymmetric sand piles and a dip in the

pressure profile beneath the tip of the piles. The authors in Ref. [2] were

assumed a similar behaviour.

We havemeasured numerically the strains inside the sand piles. It is

to be noted that it may be difficult or impossible to determine this

tesnorial quantity in experiments. Knowing this distributionwill lead to

a better understanding of the processes happening inside a granular

assembly. In particular, we showed that it is possible to obtain not only

stresses but also displacements in the heap, by judicious use of an

adiabatic relaxation experiment, in which gravity is slowly changed.

From the measurements, we find that the vertical normal strain uyy is

not only minimum at the bottom layer, but also in higher layers of the

sandpiles like the stress tensor. The behaviourwhatweobserved for the

strain tensor is same as that for the stress tensor.

Additionally, we determined numerically the fabric tensor in order

to describe the internal texture of granular assemblies. This will lead

to a measure of the degree of the internal anisotropy of the assemblies

of grains and provides as with the number density of the particle

contacts within the granular system. The fabric tensor was obtained

using normalized branch vectors at the contact points of the particle.

The trace of the averaged fabric tensor was measured throughout the

sand pile, with the result that the number of contacts of the particles

increases towards the centre and decreases towards the free surface of

the sand pile. Since the density is maximum in the centre for the sand

pile constructed from a point source, this means that the number of

contacts is higher where the density is maximum, as expected. We

observe that the deviatoric fraction of the fabric tensor decreases

towards the centre, which means the fabric is more isotropic near the

centre of the sand pile and more an-isotropic in the outer part.

Furthermore, we conclude that the trace of the averaged fabric is

linearly proportional to the product of the volume fraction and the

average coordination number for a pile consisting of a mono-disperse

mixture of particles, whereas it turns out to be incorrect for a pile

consisting of a poly-disperse mixture of particles.

An essential observation is that themacroscopic tensors stress, strain

and fabric are not collinear in the granular heap, i.e. their orientations

are different. The orientation of the fabric is tiltedmost, that of the strain

tensor is tilted least and thus, simply speaking the material cannot be

describedby a simple elasticmodel involving only two elastic constants.

However, in the casewhere there is a strongdeviationbetween the local

orientation of the fabric and stress tensors, the fabric tensor has almost

equal eigen values, rendering a precise determination of its principal

axes difficult. Hence,morework needs to bedone todeterminewhether

this deviation is significant. In the case of elliptic particles, all three

tensors seem to be well aligned with each other.

As an outlook, simulation results of stress and strain tensor may

serve for a determination of nonlinear stress–strain relationships for

sand piles. Moreover, the constitutive relations proposed for the sand

pile model so far are in terms of the stress tensor only and it would be

Fig. 5. Representative volume element for strain tensor.

Fig. 6. Representative volume element for fabric tensor.

Fig. 7. Volume fraction ν for a sand pile constructed from a point source.
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interesting to develop better constitutive relations using not only the

stress and strain tensor, but also the density and or the fabric tensor to

get a set of fully working continuum equations.
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Appendix A. Force calculation

In this study, we use soft but shape-invariant particles. In principle,

if using soft particles, one should allow them to deform on contact.

The size, direction and point of application of the force are calculated

Fig. 9. A–C: Plot of A. Vertical normal stress tensor σyy,. B. Deviatoric fraction of stress C.

Orientation of stress tensor at different heights inside the sand pile.

Fig. 8.A–C: Simulation results of the different properties of the averaged fabric tensor for a

sandpile. (A) Trace of the fabric tensor, (B) deviatoric fraction of fabric, and (C) orientation

of fabric versus lateral position in the sand pile.
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from the geometric characteristics of the overlap area and contact

length using the relative velocity of the two particles. The repulsive

force between two particles is increased when the area of overlap

becomes larger. Therefore, in a real simulation, the overlap always

remains small in comparison with the particle extension.

A.1. Normal force

Normal forces are supposed to act in the normal direction of the

particle contacts. Fig. 18 displays a pair of overlapping particles

namely i and j. Each force acts at a contact point between two

particles. In general, the direction of the force will not point towards

the centre of mass of the particle.

The normal force F⊥ can be decomposed into two parts, namely the

repulsive normal force R⊥ and the dissipative normal forceD⊥
* , i.e. it can be

written as

F⊥ = R⊥ + D
�
⊥:

The point of contact denoted as sij in which the contact forces are

applied, is determined as the centre of the line of contact, joining the

two intersection points p1 and p2of the polygons. Here ri and rj are the

vectors from the centre of mass of the respective particles to the

centre of the contact line.

In a way, the most important force is the repulsive normal force

which is taken proportional to an effective interpenetration depth deff,

defined as the areaA of the overlap between the twoparticles divided by

the contact length l. This force is also proportional to the Young's

modulus of elasticity E.

Therefore, the repulsive normal force R⊥ can be written as

R⊥ = Edeff = E
A

l
:

The contact length l is defined using on the distances between the

centres of mass and the force points ri and rj as

l¼
rirj

ri + rj
:

Weuse afixedvalueofYoung'smodulusE=107N/m for eachparticle.

Besides this most key feature of assemblies of granular particles, the

repulsive normal force, another important feature is the dissipation of

energywhich occurs due to the inter-particle collisions. The formulation

of the dissipative part of the force depends on the mechanism of

damping. Since we are interested to simulate static arrangements of

particles, it is useful to use viscous damping in order to reach the steady

state quickly. The dissipative normal force D⊥ is proportional to the

effective interpenetration velocity ḋeff , with a damping constant γ

which gives the strength of the damping.

Fig. 10. Snapshot for a simulated asymmetric sand pile constructed from a point source.

Fig. 11. Vertical normal stress distribution σyy at various heights inside a two-

dimensional asymmetric sand heap constructed from a point source.

Fig. 12.Movement of the individual particles of the sand pile constructed from a point source under gravity reduction. Sand pile was relaxed by reducing gravity slowly by about 10%.
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So the dissipative normal force can be written as

D
�
⊥ = γ ḋeff

ffiffiffiffiffiffiffiffiffiffi

Em⊥
p

;

where the effective mass m⊥of the two particles is calculated from

m⊥¼
mimj

mi + mj

;

Fig. 13. Vertical normal strain distribution uyy at different heights of simulated sand pile

constructed from a point source.

Fig. 14. Orientation of strain tensor inside the sand piles.

Fig. 15. Orientation of fabric, stress and strain plotted only for the first two bottom

layers of the sand pile.

Fig. 16. Product of the volume fraction and mean coordination number plotted as a

function of the trace of the averaged fabric tensor. A: for piles consisting of mono-

disperse mixture of particles, B: for piles consisting of poly-disperse mixture of

particles.

Fig. 17. Trace of the fabric tensor plotted as a function of the volume fraction for a sand

pile constructed from a point source.
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and the effective interpenetration velocity is given by

ḋeff¼
ΔA

Δt
= l;

with
ΔA

Δt
is the change of contact area per time.

Actually, the dissipative normal force D⊥
* is taken as the damping

force D⊥ only as long as its combination with R⊥ does not lead to an

attraction of the particles (which could happen during the time when

the distance between the particle increases after a collision and ḋeff
becomes negative). If that would happen D⊥

* is cut off at the value -R⊥,

that means one has to make sure that the damping cannot become

larger than the repulsive normal force in the case of separating

particles, otherwise we might have unphysical oscillations of the

separating particles. Therefore, the damping force in the normal

direction D⊥ is given by

D⊥ =
D�
⊥ for approach

max D�
⊥;−R⊥ð Þ for separation:

(

A.2. Tangential force

We need to model friction which leads to a tangential force along

the contact line. This is done following the ideas of Cundall and Strack.

Coulomb friction forces have a definite relationship with the normal

force only for sliding contacts. As long as the relative tangential

velocity of the particles is zero during contact of two particles, the

coulomb friction force takes a value between zero and its maximal

value μF⊥(t). A behaviour similar to this desired one is mimicked in

the simulation by assigning a spring to each newly established

contact. This spring is stretched during the subsequent relative

motion of the two particles and exerts an increasing force, until the

Coulomb friction is fully activated. Afterwards, the spring does not

extend further, it is just moved along with the particles, and the

friction coefficient takes its value for sliding friction, which in most of

the simulations is taken equal to that for static friction.

The relative tangential velocity V∥ of two particles is obtained

according to

V∥ = vi−vj + ri ×ω
i
−rj ×ωj

� �

⋅n∥

� �

n∥;

where vi and vj are the velocities of the particles i and j and ωi and ωj

denote their angular velocities.

So at the beginning of the collision, the tangential force is zero, and

it then is adapted after each time step according to

F∥ t + Δtð Þ = �min jF∥ tð Þ + v∥Δt
2

7
E + v∥

ffiffiffiffiffiffiffiffiffiffiffiffi

2

7
Em∥

r

j; jμF⊥ tð Þj
" #

:

Herein, m∥ is the reduced mass of the two particles which includes

the mass and moments of inertia of the particles, given by

m∥ = 1

1
mi

+ 1
mj

+
r2
i
Ii

+
r2
j
Ij

;and a viscous term (the square root term) has

been added to inhibit unphysical tangential oscillations. The sign ± is

determined by the sign of the first term inside absolute value bars.

In the case of granular media, this idea of universality leads to the

paradigm that for dynamical simulations even the shape of the

particles does not play any role, if one makes sure by poly-disperse

granulates that there is sufficient disorder. For statics, it may be

important that the shape is noncircular, but all else thatmatters is that

there are enough geometric constraints to render the simulation

comparable with reality, the detailed realization of shape diversity of

the particles should not matter. Moreover, it is important to have

some realization of friction, otherwise one will not obtain the correct

angle of repose, but whether this is implemented via Cundall–Strack

springs or some other clever device (which microscopically does not

precisely reproduce Coulomb's law), should be unimportant.
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Fig. 18. Illustration of the geometry used in the calculation of the forces acting on

particle i in contact with particle j.
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