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Abstract

We show how Differential Algebraic Systems (Ordinary Differential Equations with algebraic constraints) in me-
chanics are affected by stability issues and we implement Lubich’s projection method to reduce the error to practically
zero. Then, we explain how the ”numerically exact” implementation for static friction by Differential Algebraic Sys-
tems can be stabilized. We conclude by comparing the corresponding steps in the ”Contact mechanics” introduced by
Moreau.
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1. Introduction

One of the most tedious problems in computational mechanics is the drift of the solution away from ”hard con-
straints”, e.g. a pendulum simulated as a two-dimensional constraint system de- or increasing its length. The various
flavors of non-smooth mechanics[1, 2, 3, 4, 5, 6] also belong to this class of problems, though the occurring numerical
drift and what can be done about it is hardly ever discussed outside the numerical analysis community. We will ex-
plain how the projection method by Lubich[7] can overcome such instabilities in the ”numerically exact” sense, show
how static friction can be formulated as a constraint problem and how the ”numerically exact” treatment of such static
Coulomb friction constraints can be achieved.

2. Constraints in Mechanics
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Figure 1: Pendulum as constraint system.

Newton’s equation of motion F = ma = mẍ can be represented as a
system of coupled ordinary differential equations (ODEs) of first order

v̇ = F/m (1)

ẋ = v. (2)

With y = [v, x]T and f (y, t) = [F/m, v]T we get

ẏ = f (y, t), (3)

which is (apart from the use of prime instead of dot) the way to represent ODEs in numerical analysis textbooks. All
variables for the velocities v, positions x and the ”right-hand-side” f in the following are used in the sense of vectors.
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Constraint systems in mechanics[1, 8] which in the field of numerical analysis are usually referred to as Differential
Algebraic Systems (DAEs), are not only governed by Newton’s equation of motion, −→F = m−→a , but additionally by
equations for geometrical constraints g(q), which act on a subset q of the coordinates and velocities y, and which e.g.
fix the distance between rigid bodies. A typical example is the pendulum with point mass m = 1 in Fig. 1, where
the particle is constrained along a circular trajectory. The geometric constraint for a pendulum of unit length which
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(a) Trajectory of the single pendulum as constraint system
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(b) Numerical ”drift” in the radius.

Figure 2: Motion and radius of the single pendulum with
timestep for CRK with dt = 0.1.

swings around the origin (see Fig. 1) is given by

g(q) = x2
1 + x2

2 − l = 0, (4)

on the coordinates q = [x1; x2], and we will set l = 1, which
means that q is on a circular orbit with unit radius. Differen-
tiating eq. (4) with respect to time yields

ġ(q) = qT · q̇ = xT · v = 0. (5)

By differentiating eq. (5), the constraint equation for the ac-
celeration becomes

g̈(q) = q̇T · q̇ + qT · q̈ = 0. (6)

Substituting q̈ in eq. (6) by q̈ = F+F′T
m , with gravity F and

constraint force F′, the equation is simplified to first order

g̈(q) =
(F + F′)T

m
q + q̇T · q̇ = 0, (7)

where the constraint force F′ is still unknown. In order to
solve for the acceleration g̈(q), we need an additional condi-
tion for the unknown constraint force F′, which has to satisfy
eq. (7) and the scalar equation

F′T · q = −FT · x − mẋT · ẋ, (8)

as well as the principle of virtual work, e.g. the constraint force F′ does not change the energy of the system, which
means that the kinetic energy

T =
m
2

q̇T · q̇ (9)

has a time derivative which is is independent of F′ :

Ṫ = mq̈T · ẋ = mFT · q̇ + mF′T · q̇ = 0. (10)

Due to eq. (5) F′ is orthogonal to q̇ and parallel to q, so that

F′ = λx (11)

with Lagrange multiplier λ. Actually, eq. (11) could have been inferred already on physical argument, but the more
formal derivation helps to understand the more complicated examples in the later sections. Actually, it is also essential
to chose the set of initial conditions x1(0), x2(0), v1(0), v2(0) ”consistently”, which means for our case so, that the
coordinates are orthogonal to the velocities, [x1(0), x2(0)] · [v1(0), v2(0)]T = 0, else the solutions diverge exponentially.
Substituting eq. (11) into eq. (8) gives

λ =
−FT · x − mẋT · ẋ

xT · x . (12)

The pendulum is then described by the following coupled differential equations

ẋ = v (13)

v̇ =
F + F′(λ)

m
, (14)

of first order, where F′ is given by eq. (11) and the constraint value of λ is given by eq. (12). For detailed discussion
on the pendulum and constraint systems with more degrees of freedom see Witkin[8]. Because it is inconvenient to
apply the principle of virtual work for mechanical systems with parts moving on arbitrary trajectories, it is better to
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(a) Direct implementation.
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Figure 3: Absolute errors for position and velocity for the
pendulum in the direct implementation in (a) and after the im-
plementation of the projection method in (b) (for the missing
points the error is exactly 0).

formulate the general equations for constrained mechanic sys-
tems as

q̇ = v (15)

M(q)v̇ = f (q, v) −GT (q)λ (16)

0 = g(q) (17)

(see Hairer[9], p.464) where q is the vector of the coordinates,
g(q) is the set of geometric constraints and G(q)= ∂g

∂q its gradi-
ent with respect to the particle coordinates. Differentiating the
algebraic equation for g(q) = 0 gives

(
M(q) GT (q)
G(q) 0

) (
v̇
λ

)
=

(
f (q, v)

−gqq(q)(v, v)

)
(18)

as equation for the Lagrange multipliers λ. This kind of equa-
tions has very universal application possibilities. For example,
the Finite-Element-Formulation of the incompressible Navier-
Stokes equation can be rewritten in such a form, in which
case Lagrange-Parameters turn out to be the pressures in each
element[10]. Solving λ from this system of linear equations,
the equation of the system becomes a system of first order dif-
ferential equations which can be solved numerically:

q̇ = v (19)

M(q)v̇ = f (q, v) −GT (q)λ (20)

2.1. Numerical drift in constraint systems

When we compute the trajectory with the classical Runge-
Kutta method (for a, as we hope, readable account of the zoo
of numerical methods used in numerically solving ODEs see
Matuttis et al.[11]) of fourth order in Fig. 2(a), the radius of the
single pendulum decays in Fig. 2(b) within about 3 periods, the
pendulum spirals inward. The problem is not the size of the error itself, which could be reduced by the choice of a
smaller timestep, but its exponential increase, so that for sufficient long times, the solution will always be inaccurate.
This numerical drift occurs due to the finite time-step. The reasoning for coordinates also applies to velocities: The
weighted average of velocities tangential to a circle at different points is not necessarily tangential itself. The position
error εp = |x2 + y2 − l2| and the velocity error εv = [x y] · [vx vy]T are drawn in Fig. 3(a).

2.2. Stabilization of the Drift

The numeric errors should be removed in some way. Historically, the most widely used stabilization to annihilate
the drift away from the constraint is due to Baumgarte[12], who arranged the constraint C and its time derivatives Ċ
and C̈ formally as a harmonic oscillator equation

C̈ = −ksC − kdĊ. (21)

The (unphysical) constants ks, kd can be chosen[13, 14, 15] so that the resulting ODE-system of the original problem
and the harmonic oscillator in eq. (21) becomes stiff. That means that the time-scale of the constraint is chosen much
higher than the time-scale of the original problems, which leads to a ”stiff” ordinary differential equation, and for the
solution ”stiff solvers” like Gear-Predictor-Corrector[16]. Instead of Baumgarte-stabilization, we use the parameter-
free ”stabilization by projection” due to Lubich[7], where the numerical deviated solution is being ”projected” (in the
sense of the projection of a vector onto another one) back onto the correct solution manifold, in the case of one-step
methods after the weighted average, e.g. for the classical Runge-Kutta method of fourth order.
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Simply illustrated for the pendulum, assume that approximate values (xi, yi, vxi, vyi) at time ti satisfy the geometric
constraints, which means the errors εp and εv, equal zero. At the next timestep ti+1, we get approximate values (x̂i+1,
ŷi+1, v̂xi+1, v̂yi+1). Due to the numerical error, the geometric constraints are not satisfied anymore: εp = x̂2

i+1+ ŷ2
i+1−1 �

0 and εv = x̂i+1 · v̂xi+1 + ŷi+1 · v̂yi+1 � 0. Since the the length of the rope is a constant constraint, the position projection
can be achieved easily as

(xi+1, yi+1) =
(x̂i+1, ŷi+1)
|x̂i+1, ŷi+1| · l.

When using a projection of coordinates, the function F in eq. (2) in general is a complicated nonlinear function of
the coordinates, and the numerical solution (in common use for the RATTLE- and the and SHAKE-algorithm[17]) is
quite inconvenient for e.g. non-linear molecules. It turns out that no nonlinear-system must be solved. In Fig. 3(a),
the position error seems to be larger than the velocity error, but a short fuzzy error analysis convinces one of the the
opposite: from eq. (12), we have ẋ = v, so for their respective errors Δx,Δv, we can assume Δẍ ≈ Δv. For a finite
timestep Δ, we obtain in highest order ΔtΔx ≈ Δv, so the error Δx = Δv/Δt is nothing else than the velocity error,
magnified by division by the timestep. This tells us that choosing a very small timestep may not always be favorable
and that we can reduce the error if we use the projection on the velocity alone. For the satisfaction of the velocity
constraint, (vxi+1, vyi+1) can be projected (v̂xi+1, v̂yi+1) back to the real velocity direction, where the velocity vector is
orthogonal to the position vector. From Fig. 3(b) it can be seen that the errors are reduced to numerical irrelevance.
General formulae can be found in Ref.[9] for position projection, p. 471 and Ref.[7].

M(̃qn)(qn − q̃n) +GT (̃qn)μ = 0 (22)

g(qn) = 0 (23)

and for velocity projection,

M(qn)(un − ũn) +GT (qn)μ = 0 (24)

G(qn)un = 0 (25)

We have also performed numerical experiments for the double pendulum (not shown due to the lack of space) with the
direct implementation of Newton’s equations of motions and stabilization and compared them to an implementation
of the Hamiltonian formulation. Lamentably, even with stabilization, the accuracy was considerably worse than
for the Hamiltonian formulation, which is not available for problems with Coulomb friction. In that case, velocity
stabilization is the best way to reduce the computational cost and improve the numerical accuracy.

3. Modeling Friction via DAEs

The constraint system in the first two sections results in Differential Algebraic Equations with bilateral constraints
(”=”), which could be solved by transformation to normal coordinates as an ODE, without the stability issues dis-
cussed, so one might ask oneself: ”So what?”. In this section it will turn out that static friction leads to DAEs with
unilateral constraints (”≤”) which cannot be solved via transformation techniques, so the tedious direct solution must
be sought.

3.1. The physical character of friction

F

v
O

μFn

F= μF, when v < 0

Dynamic Friction Region

Dynamic Friction Region

F= −μF, when v > 0−μFn

Static Friction 
Region:

F is not unique

Figure 4: Friction regimes.

Coulomb/ dry friction between surfaces of solids can either ex-
ist as static or as dynamic friction, which are hugely different in
character. Mathematically, dynamic friction is a function,

Ffric = −μFnorm
v
|v| , (26)

while static friction is described

−μFnorm ≤ Ffric ≤ μFnorm. (27)
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Figure 5: Effect of three different friction coefficients, above, below and at the critical angle on the trajectories in for implementation of dynamic
friction for the static case with a classical Runge-Kutta-method of fourth order with dt = 0.1 in (a) and magnification of the unphysical trajectory
for μ = 3 tan(θ) in (b).

This relation is often called a unilateral constraint (with a ”≤” instead of a ”=”). Physically, the dynamic friction
dissipates energy during the relative motion of the surfaces, in contrast to static friction, which constrains the surfaces
relative to each other without any energy loss. As shown in the Fig. 4, when the velocity v � 0, the value of friction
is uniquely determined by eq. (26), however when the velocity = 0, the friction force could have any value within the
bounds of the inequality (27), but is in fact unique, when it compensates all other external forces so that v = 0. In the
following, we use a single friction coefficient μ for both static and dynamic friction, the equations in the following
can easily be generalized for different coefficients. Though orthodox physics claims that the static friction coefficient
should be larger then the dynamic friction, newer engineering books give only a single friction coefficient for a wide
range of materials (e.g. ceramics[18, 19]). Where different coefficients are given[20], these stem from different
references, so that the equivalence of the material and laboratory conditions seems doubtful, and tables in different
books usually contradict each other (e.g. static friction for steel on steel in Kuchling p. 584 μ = 0.12, in Bhushan
and Gupta section 2.11 μ = 0.7 . . . . For Polymers, in general, the static friction coefficient it even smaller then the
dynamic friction coefficient[21]. For the problem of reliably tabulation friction coefficients, see Rabinowicz[22].

3.2. Unsatisfying Approaches

V

G

FnormalFfriction

Critical Angle θ

Figure 6: Possible cased for friction in the block on a slope.

One naive way is to neglect the difference between static
and dynamic friction and use eq. (26) also for the computation
of static friction. For a particle on an inclined slope as shown
in Fig. 6, where θ is the critical angle, the results in Fig. 5 indi-
cate that when the friction coefficient μ ≤ tan(θ), the numerical
solution make sense physically, however, when μ > tan(θ), the
solution is physically meaningless. Another way[23] is to model
is to increment the tangential force Ft

i (zero at the beginning of
the contact) between contacting particles in every timestep dt
proportional to their tangential velocity vt and a ”tangential spring constant” kt,

F̃t
i = Ft

i−1 − ktvtdt, (28)

and to truncate this force if the maximal tangential force exceeds the dynamic friction force μFt
i for a normal force

Fn
i , according to

Ft
i = min(|F̃t

i |, |μFn
i |) ·

F̃t
i

|F̃t
i |
. (29)
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Below the threshold eq. (29), equation (28) is the time-derivative of the equation for the undamped harmonic oscillator
dF/dt = −kdx/dt, so a particle on an inclined plane does not come to rest but continues to swing around the contact
point. For the sake of verisimilitude, a second term e.g. with k̃tvthas to be included which damps out these unphysical
oscillation. Though the constants kt, k̃t have a physically meaningful interpretation as the onset speed of friction,
such an approach is unsatisfying in any application other than the statistical physics of granular media[24], because
it does not suffer from the numerical instabilities we will discuss later in the text and the many-body interactions
annihilate the noise fluctuations and the simulation results become independent of kt, k̃t for reasonable parameter
choices. Nevertheless, an approach which increases the degrees of freedom in a strongly vibrated medium may lead
to unforeseen results if the fluctuations arbitrarily load or discharge energy from the ”springs” in eq. (28).
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(a) Linear oscillator without damping.
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(b) Linear oscillator with viscous damping and γ = 0.4.
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(c) Linear oscillator with friction μ = 0.2.

Figure 7: Linear oscillator without and with damping.
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3.3. Static friction in phase-space

To implement friction in ”many-body-dynamics”[25, 26, 27] ”numerically exact” two fundamental problems must
be solved. The first is how to detect whether the fiction is dynamic or static (velocity reversal is not sufficient, as we
will see later), and if the condition for static friction is fulfilled, the second problem is to find the physically unique
value for static friction. To define the condition for static friction, it is revealing to compare the portrait of the phase-
space (the plot of the elongation versus the velocity, for different initial conditions) for a simple harmonic oscillator
with and without static friction (for convenience, with unit mass m = 1). For the free harmonic oscillator

ẍ = −kx, k = 1, (30)

in Fig. 7(a), the trajectories in phase-space are ellipses. Actually, for this energy-conserving (”symplectic”) system it
would be better to use a symplectic integrator, i.e. one for which the deviation of the energy from the exact solution
is bounded, like e.g. the Störmer[28]/Verlet[29] of second order, or related higher order derivatives[30], which can be
derived by the Suzuki-Trotter-decomposition[31] (for an overview on symplectic methods, see Hairer[32]). For the
harmonic oscillator with viscous damping

ẍ = −kx − γv, k = 1, γ = 0.8 (31)

in Fig. 7(b), the trajectories in phase space approach the origin in exponentially tightening spirals. For the harmonic
oscillator damped by dry/ Coulomb friction

ẍ = −kx − μ v
|v| , k = 1, μ = 0.2 (32)

the trajectories don’t spiral into a single fix point, but into a ”fix line” between the points (x, v) = (μ/k, 0) and (x, v) =
(−μ/k, 0) (thick line in Fig. 7(c), right.). This fix-line can be detected by the sign of the parameter a = −sign(v)x − μ,
which changes sign for dynamic dry friction (beyond x < −μ/k and x > μ/k) when the line at v = 0 is crossed, but
not in the case of static friction, where for −μ/k ≤ x ≤ μ/k it is negative (Fig. 8). Above and below the fix line, which
corresponds to static friction, the flow of the ODE (direction of the arrows in Fig. 7(c), right) points towards the line,
while for dynamic friction, the flow crosses the axis at v = 0 without a change of the direction. Therefore, the task for
identifying static friction lies in a proper generalization of a, which we will show in the next section.

3.4. Static Friction as a Constraint

As seen above, static friction, a constraint of motion, can not be treated as dynamical friction, an energy dissipation
mechanism. Since we can not get an unique value from the inequality relation eq. (27) and can not substitute eq. (26),
we have to determine the value of the static friction from the physical constraint, as we done before in the pendulum
case. The physical meaning of ”static friction” is in fact a constraint which holds two bodies at rest with respect
to each other. In the following, we follow the elaboration of the formalism according to Hairer[9], p.464. First we
separate the phase-space of the differential algebraic equation into the one with positive and the one with negative
velocities according to the switching function g(y), so that we have the two possible forces

ẏ =

{
fI(y) = (Fext. − μFnor.)/m if g(y) > 0
fII(y) = (Fext. + μFnor.)/m if g(y) < 0

(33)

where y represent the velocity, and the switching-function g(y) = sign(y) indicates the direction of velocity. f is
discontinuous on the surface S = {y; g(y) = 0}.We now look for the ”true” value for f (y) for g(y) = 0 in the ”convex
hull” of fI and fII , which is just the linear combination

ẏ = f (y, λ) = (1 − λ) fI(y) + λ fII(y), (34)

of fI and fII , see Ref. [25], p.199. The value of λ is determined by g(y) = 0.
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Figure 8: Sign of the parameter a = −sign(v)x − μ for the harmonic
oscillator with static friction μ = 0.2.

By differentiating g(y) = 0, we obtain:

∇g(y)ẏ = ∇g(y) f (y, λ). (35)

Setting

aI = 〈∇g(y), fI(y)〉 (36)

aII = −〈∇g(y), fII(y)〉, (37)

where the gradient ∇ in 1D reduces to ±1. Then
eq. (35) becomes (1−λ)aI(y)−λaII(y) = 0, the value
of λ is obtained by

λ =
aI(y)

aI(y) + aII(y)
, (38)

which means nothing else that the highly nonlinear,
non-smooth problem for the jump in the friction in
Fig. 4 has a solution which can be computed from
equations linear in λ, no Newton-Raphson-Procedure or other iterative computation is necessary. Since the static
friction can be solved uniquely by a geometrical constraint, which as the kinetic energy of the contacting bodies with
respect to each other, the remaining problem is to find a suitable strategy to detect whether the fiction is dynamic or
static. aI and aII is being using as the criterion in our detection strategy. In the friction case

aI = (Fexternal − μFnorm)/m (39)

aII = −(Fexternal + μFnorm)/m (40)

(Ref. [25] p.196−p.200) for the acceleration in positive direction aI and in opposite direction aII we have the following
four possibilities:

1. aI > 0, aII < 0: the acceleration of the system is in the positive direction, the integration process (to calculate
velocity) follows aI so there is velocity reversal for the dynamic friction, no static friction.

2. aI < 0, aII > 0: the acceleration of system is in the negative direction, the integration process follows the aII ,
dynamic friction only.

3. aI < 0, aII < 0: the acceleration of system is neither positive nor negative, which means 0, static friction
domain.

4. aI > 0, aII > 0: the acceleration of system is in both directions. This is physically meaningless and may happen
due to unphysical chosen initial conditions, which in analytical mechanics occur in systems associated with
”Painleve paradoxes”.

Results of the implementation of the projection method in the ”block-slope” case can be seen in Fig. 9. Because
the switching function g(y) is also a constraint, if g(y) = 0 is fulfilled, we set the velocity identical to 0, which is
the reason why the one-dimensional problem does not suffer from numerical instabilities. For higher dimension, as
switching function and constraint g(y), the relative velocity between the mechanical constituents will be used.

3.5. Many-body problem and two dimensions
We treat the many-body problem with friction for the cannonball-stacking in two dimensions (Fig. 10) neglecting

the rotation of the particles. The particles are ”soft”, which means that the elastic deformation is taken into consider-
ation via the use of a Young modulus. In this example, we use ”linear potentials” (though Hertzian contacts are more
physical, see Wolf[33] for a more elaborate discussion). The standard-potentials between grains are usually tailored
according to an oscillator equation

F = −α1ξ
β
1 − α2ξ̇

β
2 , (41)

where ξ is the overlap, ξ̇ is the change of the overlap and α1, α2, β1, β1 are chosen by the researchers discretion.
Irrespective of the choice of constants, the time dependence for an idealized collision of duration Tc will look more
or less like the one in Fig. 11, so the damping-force introduces jumps into the force progression.
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Figure 9: Block on a slope simulated with the DAE-formalism eq. (38) distinguishing dynamic and static friction, below the critical angle (μ =
3 tan(θ)), the body is constrained by static friction.

Figure 10: Cannonball-stacking in two dimensions for three, six and ten cannon-balls as an example of many-body problem.
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granular forces tailored according to the
oscillator-equation.

Though the cohesive part (shading in Fig. 11) can be eliminated by
appropriate if-conditions[24], the jump at the initial closing of the
contact leads to numerical instabilities for explicit integrators (built
from a Taylor-series of the force progression), e.g. explicit Runge-
Kutta/one-step methods, and the Verlet-family (Verlet, Velocity-Verlet,
Leapfrog)[17]. Therefore, we will use an implicit multi-step method
(BDF/Gear predictor corrector of 5th order[16, 17].) in this section.
The stabilization-step is inserted after the correction step. The usage
of the projection formalism in multi-step methods is in principle math-
ematically questionable: The conditions following eqs. (39,40) assume
that the sign of aI , aI I does not change during a timestep, which can be
fulfilled by reducing the timestep for one-step methods. For multi-step
methods which resort to the use of values from former timesteps, it is in
principle possible that each iteration step has a different kinetic condition
(change from static to dynamic friction and back). In our experience, for
actual physical problems concerned this has not been a limitation.

3.6. Contact matrix

For changing particle contacts, the dimensions of the G(q) matrix in eq. (20), change during the integration time
steps. When aI and aII from eq. (37,36) are used as the criteria to check whether the friction is in the dynamic or static
region, the gradient ∇ in 2D is not ±1 anymore, but for n contacts, see Fig. 12, become (in two dimensions) sparse
matrices with 2n entries:
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G1(q) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0 0 0 0

sin(θ12) − cos(θ12) − sin(θ12) cos(θ12) 0 0
sin(θ13) − cos(θ13) 0 0 − sin(θ13) cos(θ13)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (42)

G2(q) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 0 1 0 0 0

sin(θ12) − cos(θ12) − sin(θ12) cos(θ12) 0 0
sin(θ13) − cos(θ13) 0 0 − sin(θ13) cos(θ13)

0 0 sin(θ23) − cos(θ23) − sin(θ23) cos(θ23)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (43)

1
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tan13 tan 12

1 2

3

tan1

tan13 tan32

tan2

tan12

t1 t2

θ12

Figure 12: Contact situation for the stacking of three cannon balls, the one
on the left described by eq. (42), the one on the right described by eq. (43)

Nevertheless, when the method is implemented
in a straightforward way, the decay of the kinetic en-
ergy in Fig. 13(a) shows that that the particles don’t
”stick”: The constraint is only fulfilled up to the er-
ror order of the time integrator. The relative veloci-
ties are not zero, but e.g. for a O(tau2) method, they
are O(tau3) etc. Nevertheless, projecting the solu-
tion onto the exact constraints with the stabilization
method by Lubich[7] leads to a perfectly static con-
figuration for the many particle case Fig. 13(b). as it
did for the single particle case.
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Figure 13: Typical energy for a stacking of ten cannonballs (μ = 0.5) with friction modeled with DAE without (left) and with stabilization by
projection (right).

4. Summary and perspectives

We have shown how the DAE-formalism can be used to model friction between elastic particles, so that the
friction force is reacting to the already existent elastic forces between the particles. A ”straightforward” numerical
implementation will not lead to resting contacts, but a ”numerical stabilization” is necessary. In this approach, the
modeling of the elastic particles is clearly separated from the numerics: a variety of integrators can be used, and
stabilization can be included. In the contact mechanics approach by Moreau for rigid particles, the ”sweeping process”
does not separate the computation of the tangential and normal forces any more, but the ideas outlines in this paper
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are the same: the solution of a DAE instead of ODEs with model force laws. The event-driven collision dynamics can
be implemented in a soft-particle simulation if Runge-Kutta-integrators are used which can be stopped and restarted
at the particle collision times via the technique of ”dense output”[25]. Because of this ”smooth” transition between
DEM, contact mechanics and the event-driven method, it is not necessary to present the methods as totally different
entities like in Wolf[33]. When comparing the relative merits of ”contact mechanics” of rigid bodies and elastic
particle simulation, is should not be forgotten that the sound velocity for rigid bodies is infinite, no matter what the
contact situation is; this may be inconvenient to model experimental results which depend on the sound velocity and
contact situation, like in Shourbagy et al.[34].
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